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Modeling Heterogeneous Behaviors With Modified
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Abstract— This article proposes an agent-based policy simu-
lation framework that can be applied to the cases satisfying:
1) the agents try to maximize some intertemporal preference
and 2) the impacts of different factors on agents’ behavioral
tendency are monotonic. By combining the simulation and
optimization methods, this framework balances the flexibility and
validity of agent-based models (ABMs): the sigmoid function is
modified and used to model agents’ decision-making rules, and
the evolutionary training method is used to calibrate agents’
behavioral parameters. Based on an example for the emission
trading scheme, the application of the framework is presented
and evaluated in detail.

Index Terms— Agent-based model (ABM), evolutionary train-
ing, flexibility and validity, policy simulation framework, sigmoid
function.

I. INTRODUCTION

AGENT-BASED models (ABMs) characterize socioeco-
nomic systems as dynamic interactions among agents

from a bottom-up perspective [1] and can introduce more com-
plex interaction mechanisms in policy simulation, for example,
herding effect in the crowd behavior [2], [3], continuous
double auction mechanism in the financial markets [4], impact
of network in the social choice [5], and society and collabo-
ration [6]. Furthermore, ABMs can consider the attribute and
behavior heterogeneity among agents [7], [8], as well as the
bounded rationality and adaptation in agents’ decision-making
processes [9].

However, these modeling flexibilities come with two “major
costs.” First is the lack of a general framework compared with
the neoclassical economic models, especially for modeling
agents’ decision-making processes, which can range from
“zero-intelligent agents who act randomly [10]” to “sophis-
ticated agents who can forecast, optimize, and adapt their
strategies [9].” This wide range hinders the communication
in the ABM community, reduces the comparability between
different models, and also leads to the second cost: the
difficulties in ensuring the model validity.

For comparison, neoclassical economic models follow a
general theoretical setup (i.e., agents’ utility optimization and
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market equilibrium) and locate their validity first in rigorous
mathematical derivation and then in their consistency with
empirical data. Perfect rationality might not be a perfect
assumption for agents [11], but it disciplines the modeling of
agents’ behaviors and is useful and testable. On the other hand,
ABMs model and simulate agents’ decision-making processes
and interactions following the bounded rationality. Ideally,
the validity for modeling the behaviors of agents is built on:
1) validated behavioral theory [12] or 2) empirical calibration
based on human experiment [13], [14], survey data [15], and
so on. However, this theoretical support or empirical evidence
is not always available.

In this article, the author tries to respond to both “major
costs” of ABMs by proposing an agent-based framework
for policy simulation, which can be applied to the cases
satisfying the following two conditions: 1) the agents try to
maximize some intertemporal preference [16]—for example,
accumulated profit through the simulation periods—by making
repetitive decisions in each period and 2) the impacts of
different factors on agents’ behavioral tendency are monotonic,
for example, lower cost and higher social preference will
increase a consumer’s tendency to buy a specific car.

The framework includes two parts as follows.
1) First is a flexible and interpretable function form for

modeling agents’ decision-making rules, i.e., their policy
functions for the repetitive decisions. By modifying the
sigmoid function f (x) = 1/(1 + e−x) for different situ-
ations, the function form can integrate multiple impacts
on agents’ decisions flexibly (see Section III-A).

2) Second is an evolutionary training method for calibrating
the “behavioral parameters” in agents’ policy functions.
Specifically, a “training stage” is introduced to initialize
the “behavioral parameters” of the agents, and then,
in the “simulation stage,” the impact of policies is sim-
ulated and evaluated. Without relying on the empirical
data, the agents learn from their past experience and
update the behavioral parameters for higher intertempo-
ral utility (see Section III-B).

In summary, this framework tries to balance the model-
ing flexibility and validity by combining the simulation and
optimization methods. The flexibility is kept by constructing
agents’ decision-making rules based on the sigmoid function.
The validity is improved (or partially guaranteed) by training
the agents beforehand—they are still with bounded rationality
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in the simulation, but to a certain extent, are making reasonable
decisions. Besides, the quality and impact of the training stage
can be evaluated by: 1) observing the convergence in the
training stage, including agents’ behavioral parameters at the
micro level and the simulation results at the macro level and
2) comparing the simulation results with and without the
training stage.

The rest of this article is organized as follows. Section II
reviews the studies on ABM design and calibration and
discusses the tradeoff between flexibility and validity in using
ABMs for policy simulation. As a balancing solution, the pro-
posed framework is introduced in Section III. Then, Section IV
provides an application example of the framework based on
my previous study on the carbon emission trading scheme
(ETS) [8], with a special focus on the implementation and
evaluation of the evolutionary training in detail. Finally, this
article is concluded in Section V.

II. LITERATURE REVIEW

All models are simplifications. We can build wind tunnels
to simulate the flying environment for designing aircraft based
on aerodynamics. However, we have to simplify more when
modeling the socioeconomic systems: what we do not satis-
factorily know are not only the parameters but also the mecha-
nisms. In this regard, model choice is fundamental perspective
choice: it depends on which mechanism the modeler wants to
emphasize.

This fact does not sound scientific but implies two funda-
mental criteria for model selection. First is flexibility, mean-
ing that the model should be handy enough to capture the
important mechanism for explaining the phenomenon in focus.
Second is validity, meaning that the model is acceptable for its
intended use because it meets specified performance require-
ments [17]. When developing models for policy simulation, the
tension is always to improve the flexibility without losing too
much validity and vice versa. Compared with the mainstream
neoclassical economic models, ABMs have been growing as
an alternative and supplement by following a new paradigm
to balance the flexibility and validity.

1) Regarding the flexibility, ABMs model agents’ behaviors
with bounded rationality as: 1) a set of if–else rules;
2) a response function (i.e., “fast and frugal heuristics”)
of their states and the signals from the environment
[4], [18]; or 3) myopic optimization based on imperfect
information and limited computation capacity [9]. Thus,
without the pressure to solve agents’ rational decisions
in a dynamic setting, ABMs can flexibly integrate:
1) details of the environment, e.g., agents’ interaction
mechanism, coevolution of the environment and agents,
spatial or network structure, and so on; 2) attribute or
behavior heterogeneity among agents; and 3) agents’
learning and adaptation behaviors.

2) Regarding the validity, ABMs model agents’ behaviors
based on: 1) validated theories of boundedly rational
decision-making process, e.g., the behavioral theory of
the firm [12], [19], [20], [21], or 2) existing framework
calibrated with empirical data from human experiments,

TABLE I

ASPECTS FOR DESIGNING AN AGENT-BASED MARKET MODEL

e.g., discrete choice experiment [15], [22] and simple
forecasting heuristics [13], [14]. Besides, the evolution-
ary training method can also be used to enhance model
validity [8].

In the following, studies on ABM design (Section II-A) and
calibration (Section II-B) are reviewed to discuss the tradeoff
frontier between flexibility and validity in using ABMs for
policy simulation and, further, to identify the cases for which
we can move the frontier forward by using the framework
proposed in this study: modeling heterogeneous behavior with
modified sigmoid function and evolutionary training.

A. Flexibility: ABM Design

Designing an ABM includes two parts. First is the envi-
ronment, meaning the resources and constraints in the system,
the interaction mechanism among agents, and agents’ impact
on the environment (i.e., coevolution between the environment
and agents). Second is the agents, including their attributes and
decision-making rules. Taking an agent-based market model as
an example, the designing aspects are summarized in Table I.

Concerning the environment design, more price formation
mechanisms other than “market clearing” can be modeled
by the ABMs to capture specific price dynamics [16], for
example, market maker [23], floor trading [24], and continuous
double auction [4], [10]. In other cases, agents can also
interact by exchanging information [25], imitating behavior
[2], [26], [27], learning from each other [28], [29], and so
on. Introducing the interaction mechanisms in reality to the
environment can be one major reason why ABM is used,
as interaction is the fundamental reason that makes a system
“complex,” i.e., with emergent properties.

Concerning the agents design, on one hand, ABMs
take the bottom-up perspective and can flexibly consider
the heterogeneity among agents, concerning their attributes
(e.g., endowment and preference) or behaviors (e.g., the “fun-
damentalists” or “chartists” in financial ABMs [7]). By consid-
ering the heterogeneity among agents, two types of questions
can be answered: 1) how can the existence and degree of
heterogeneity influence the system dynamics? and 2) what are
the distributional impacts of a specific policy design on the
heterogeneous agents in the system?

On the other hand, ABMs can model agents’ bounded
rationality in their decision-making processes, which provide
interfaces to psychological and behavioral studies. Fig. 1
shows a full coverage of the modules to construct an agent
in the ABMs, including the information flow. Each of the
three modules—cognitive architecture, decision formation, and
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Fig. 1. Design of agents in the ABMs.

learning and adaption—has different implementations in dif-
ferent ABMs as long as they can fit together. Besides, for
different systems and research questions, it is not always
necessary to include all the modules. From simple to sophis-
ticated, four modes for designing the agents are summarized
as follows.

First is zero-intelligence mode, meaning that the agents
have no “cognitive architecture” or “learning and adaption”
modules and only have almost empty “decision formation”
modules that are as simple as “random behavior.” Gode and
Sunder [10] designed “zero-intelligence” agents that randomly
draw bidding or asking prices within the budget constraints and
trade with each other following the continuous double auction
mechanism to explore the allocative efficiency of the market
mechanism.1

Second is responsive mode, meaning that the agents observe
the environment and react directly based on their “decision
formation” modules without forming any forecast based on
the “cognitive architecture.” Besides, the agents do not have
“learning and adaption” modules, either. The “decision forma-
tion” module can be implemented in different ways: 1) a set
of “if–else” rules [12]; 2) “fast and frugal heuristics” [18]
represented by behavioral functions [8] or artificial neural
networks [30]; and 3) myopic optimization.

Third is deliberative mode, meaning that the agents first
form the “forecast of the future” based on their “cognitive
architecture” modules, and then, the forecasts are taken as
input for their “decision formation” modules to finally form
their decisions. Similar to the “decision formation” module,
there are also different implementations for the “cognitive
architecture” module [31], [32].

Fourth is introspective mode, meaning that the agents can
update their “cognitive architecture” and/or “decision forma-
tion” modules based on their “learning and adaption” modules.
Conceptually, learning and adaptation are parts of behavior
rules, which concern how the behavior rules are updated. The
design of “learning and adaption” module highly depends on

1By comparing the “allocative efficiency” of the trading among “zero-
intelligent” agents and the trading among human traders, the authors found that
the difference between the two cases is not significant (both close to 100%).
Then, the authors concluded that “allocative efficiency” of a continuous double
auction derives largely from its structure, independent of traders’ motivation,
intelligence, or learning.

the design of the module(s) it aims to update. Brenner [33]
distinguished between “nonconscious learning,” “routine-
based learning,” and “belief learning” in the ABMs.2 Further-
more, another distinguishing criterion is the population level
of learning [29]: 1) individual learning: each agent learns only
based on its own experience [9] and 2) social learning: agents
also take experiences of other agents (behaviors and payoffs)
into consideration during the learning process [36], [37].
Table II summarizes different methods for implementing the
“learning and adaption” module in ABMs.3

B. Validity: ABM Calibration

Manson [46] summarized two steps in developing an ABM
for a target system.

1) Distill the system into a “conceptual model” by identi-
fying the relevant “mechanisms” of the environment or
agents.

2) As shown in Table I, instantiate the conceptual model in
a “software model” (i.e., the ABM) by: 1) implementing
the mechanisms with specific function forms based on
existing theories or assumptions and 2) calibrating the
parameters based on empirical data of the target system.

For a developed ABM, “validity” refers to the overall
quality of the model. “Validation” means to assess the model
validity according to specified performance requirements that
the model needs to satisfy for its intended use [17]. To improve
the validity, existing studies mainly focus on parameter cali-
bration, including two categories of methods.

The first category is direct calibration, which is to assign
values for model parameters directly based on empirical data,
including direct observation [47], analytical methods [48],
survey [15], and human experiment [13], [14]. However, due
to the limitations of data availability (especially at the agent
level) and complexities of the model, very few ABMs can
be calibrated (only) based on the direct calibration meth-
ods [49]. The second category of methods is simulation-based
calibration, which can be further categorized as: 1) simulated

2“Nonconscious learning” corresponds to the situation when learning aims
to update the “decision formation” module that is designed as follows: the
agent faces N possible actions, and the decision-making rule is modeled as
a choice probability distribution defined on the actions. Then, the agents
update their choice probability distribution upon the following logic: if an
action leads to a negative outcome, it will be avoided in the future; while
if an action leads to a positive outcome, it will reoccur [34]. “Routine-
based learning” corresponds to the situation when the “learning and adaption”
module aims to update the “decision formation” module: a direct connection
is established from agents’ past experiences and observations to their current
behaviors, according to some fundamental principles of learning concluded
from experiment results or ad hoc reasoning [35]. “Belief learning” corre-
sponds to the situation when the “learning and adaption” module aims to
update the “cognitive architecture” module [9]. “Belief learning” relates to
real learning process most, which is also referred to as “cognitive learning”
in the psychology literature, while routine-based learning is only designed to
represent certain features of learning processes approximately.

3The meanings of the abbreviations are as follows: NL, RL, and BL refer
to “nonconscious learning,” “routine-based learning,” and “belief learning”;
I/S refers to “individual learning/social learning”; SPGA refers to “single-
population genetic algorithm”; SPGP refers to “single-population genetic
programming”; MPGA refers to “multiple-population genetic algorithm”; and
MPGP refers to “multiple-population genetic programming.”
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TABLE II

METHODS FOR IMPLEMENTING THE “LEARNING AND ADAPTATION” MODULE IN ABMs

minimum distance (SMD) methods4; 2) likelihood-based
methods [55], [56]; 3) Bayesian approaches [57]; and
4) abduction analysis5 [58]. Platt [49] compared a number of
methods to determine the respective strengths and weaknesses
of each approach. Fagiolo et al. [59] provided a critical review
of the existing validation techniques based on a simple theo-
retical framework.

4Generally, the idea of SMD can be summarized as three steps: 1) run
the model with specific parameter combinations (randomly drawn for start)
and produce simulated data; 2) measure the “distance” between the simulated
and observed data; and 3) use the measured distance to drive searching the
parameter space, recursively run the first two steps, and ultimately find the
parameter combination that minimize the distance. Regarding the measure-
ment of distance, several criteria or methods have been proposed, including
the method of simulated moments (MSM) [50], indirect inference (II) [51],
sum of appropriately weighted squared differences [52], Markov information
criterion (MIC) [53], and generalized subtracted L-divergence (GSL-div) [54].

5Compared with the first three approaches, “abduction analysis” does not
insist on finding specific “values” for the parameters but tries to reduce the
“parameter space” as far as the empirical data allows. First, a set of parameter
vectors are randomly sampled from the initial “parameter space,” and each
of them corresponds to a “model specification.” Then, a statistical test is
constructed based on the empirical data, and some of the model specifications
are rejected, leaving a set of model specifications. Finally, the common
dynamics shared by all these remaining model specifications are regarded
as the model result.

For most ABMs, the calibration usually starts with the
direct calibration methods. Then, for the rest parameters that
cannot be directly calibrated, the simulation-based calibration
methods could be applied, as they imply the golden criterion
of model validity: the consistency between the model output
and the real data of the system.

However, due to the lack of data at the agent level and
the explosion of parameter combinations, both the direct and
simulation-based calibration methods are limited to calibrating
a smaller group of environment parameters or the parameters
that are homogeneous for all the agents. For example, Barde
and van der Hoog [60] estimated 8 out of 33 parameters for
a large-scale economic ABM, the Eurace@Unibi model [61],
and the behavioral parameters are homogeneous among the
agents. Kukacka and Barunik [55] estimated the financial
ABM developed by Brock and Hommes [7], and the behavioral
parameters are also homogeneous for the agents.

As a result, the existing calibration methods are limited
in the following situation: when the agents are heteroge-
neous regarding their endowments or objectives, they should
also be calibrated individually with heterogeneous strategies
(i.e., behavioral parameters). Besides, as shown in Table I,
improving model validity also concerns improving the valid-
ity of “mechanisms.” For the environment, the mechanism
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(notably of agents’ interaction) highly depends on the context,
while for the agents, as reviewed in Section II-A, there are
different implementations for each of the three modules—
cognitive architecture, decision formation, and learning and
adaption. Existing methods focus on calibrating the parameters
of a given structure (i.e., function form) and provide limited
insight on the choice of structure.

Apart from parameter calibration, another strand of studies
discussed the implication of learning and adaptation for the
validity of ABMs, and it was first under the topic of “rational
expectation (RE).” The question was: will learning lead the
interaction between boundedly rational agents to a rational
equilibrium, and if so, how fast could it be?

Arifovic [28] first applied the genetic algorithm (GA) in
modeling agent’ learning in the cobweb model and found that
GA works better than the other frequently studied algorithms
in: 1) converging to the RE equilibrium for a wider range
of parameter values and 2) capturing several features of the
experimental behavior of human subjects. Arifovic [28] also
compared social and individual learning based on GA, which
was further analyzed by several other studies [29], [62], [63].
In a following study, Arifovic and Ledyard [64] proposed the
“individual evolutionary learning (IEL)” model for mecha-
nism design, which was also used for correlated equilibrium
formation [65] and market design [66], [67]. Most recently,
Anufriev et al. [13] used a GA-based individual learning
model to show how agents learn to use smart heuristics in
a complex environment. The output dynamics were compared
with the stylized facts of learning-to-forecast experiments. The
results showed that the model captures individual forecasting
behavior in the experiments quite well and also reproduces the
aggregate outcomes. This further enhanced the implication of
learning for model validity.

III. GENERAL FRAMEWORK

Following the review in Section II, this section introduces
the proposed framework for policy simulation in two parts.
First, for modeling agents’ behaviors (i.e., policy functions),
the form of sigmoid function is used and modified for its flex-
ibility to approximate different function forms (Section III-A).
Second, evolutionary training is used to individually calibrate
the behavioral parameters of agents (Section III-B).

A. Behavior Modeling: Modified Sigmoid Function

As reviewed in Section II-A, the design of agents includes
three modules and each module can be implemented in differ-
ent ways as long as they can fit together. For simplification and
generality, this study chooses the sigmoid function [ f (x) =
1/(1+e−x)] as the starting point to construct the agents’ “pol-
icy function(s)” for its appropriate properties: 1) continuity and
smoothness; 2) unlimited range of independent variable; and
3) limited value range within (0, 1).

Taking a technology diffusion model as an example,
we assume that the agents need to make technology adoption
decisions based on its current state and available technology
options to maximize its total profit by the end of the simula-
tion. Thus, the agent’s “tendency” to adopt one technology can

be modeled as a “probability” by (1), in which the impacts of
two factors are integrated by the modified sigmoid function:
1) cost of the technology (C), which has a negative impact
on the adoption tendency, and 2) potential benefit of adoption
(B), which has a positive impact on the adoption tendency

Pr =
(

1

1 + δ1
C

)δ2
(

1

1 + δ3
−B

)δ4

. (1)

Given the property of the sigmoid function, both parts on
the right-hand side have ranges of (0, 1), so their product
Pr on the left-hand side is also in (0, 1), corresponding to
its meaning as a probability. δn (n = 1, 2, 3, 4) are four
behavioral parameters. δ1 and δ3 capture the sensitivity of the
agent’s adoption tendency to price and social influence. The
monotonicities of the two impacts are guaranteed when δ1 and
δ3 are larger than 1. δ2 and δ4 capture the relative weights of
the two impacts.

Taking a modified form of the sigmoid function, (1) imple-
ments the “decision formation” module of the agents facing
the repetitive decision on technology adoption: the concept of
“utility” is jumped over, and the impacts of identified factors
are linked to the “adoption tendency” directly. By adding more
similar segments on the right-hand side, we can integrate
the impacts of more factors flexibly, as long as we know
their monotonicities. Besides, the meaning of the behavioral
parameters is interpretable.

On the other hand, for the “cognitive architecture” and
“learning and adaptation” modules, we can also construct the
corresponding functions by modifying the sigmoid function
to model agents’ tendency, as a probability to adjust their
forecasts or behaviors, which is influenced by a set of fac-
tors with known monotonicities. More examples are provided
in Section IV.

B. Behavior Calibration: Evolutionary Training

As shown in (1), the values of behavioral parameters δn

(n = 1, 2, 3, 4) decide the monotonicities of influencing
factors, as well as the sensitivity and relative weights of their
impacts. To guarantee the reasonability of agents’ behaviors,
as well as the validity of the model, it is important to find
proper values for agents’ behavioral parameters. Thus, as the
second part of this policy simulation framework, evolutionary
training is used to calibrate the behavioral parameters of
agents. Specifically, before the “simulation stage” for the
ex ante analysis of a policy, a “training stage” is implemented,
including the three steps as follows.

1) Randomly generate the initial behavioral parameters for
the agents and start the training stage.

2) Let the agents individually update their behavioral para-
meters based on the GA.

3) Stop the training stage according to specified criteria, for
example, the convergence of agents’ behavioral parame-
ters at the micro level or the result variables at the macro
level.

Conceptually, this evolutionary training method is different
from the methods reviewed by Platt [49] for parameter cali-
bration because the model validity is not empirically evaluated
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but only improved or disciplined by optimization. In other
words, the performance requirement for the model validity is
not “producing data that are close enough to the observed
data,” but specified as “the agents are smart enough to make
reasonable decisions.” This is a compromise when simulation-
based calibration is not possible due to lack of empirical
data. On the other hand, the evolutionary training method
also allows individually calibrating agents’ behavioral para-
meters to consider their heterogeneity regarding endowments
or objectives.6

In summary, by combining the optimization and simulation
methods, this framework balances the flexibility and validity
of ABMs. For the cases when simulation-based calibration
is not possible due to lack of data, we can develop “test-
bed” models within this framework to evaluate the ex ante
impact of policies. An example with details of implementation
is provided in Section IV.

IV. FRAMEWORK APPLICATION EXAMPLE

This section introduces an agent-based model for the emis-
sion trading scheme (AMETS) as an example [8], focusing
on firms’ behaviors modeling and the evolutionary train-
ing process. Section IV-A introduces the background and
structure of AMETS. Then, the details of agents’ behav-
ior modeling based on the modified sigmoid function and
the implementation of evolutionary training are provided in
Section IV-B and IV-C. Finally, the results that show how the
evolutionary training improves the model validity are provided
in Section IV-D.

A. Model Background

The ETS is a key policy instrument for controlling
the greenhouse gas (GHG) emission [68]. At the beginning, the
government sets a target for total emission and allocates the
allowances to covered firms from different sectors. Then, in
the abatement phase, the firms trade with each other and
also make production adjustments and low-carbon technology
adoption decisions. By coordinating these three options, the
aim of the firms is to reach the abatement target at the lowest
cost. At the macro level, the policy is to form price signal and
promote low-carbon technologies diffusion and ultimately to
mitigate the GHG emission at the lowest total social cost.

One key feature of the ETS is the heterogeneity among
firms, not only from different sectors but also from the
same sector. Three aspects of heterogeneity are included:
1) allowance gap, i.e., the difference between total emis-
sion and initially allocated allowances; 2) carbon intensity
and product profit, which decides firms’ abatement cost by
reducing the output; and 3) cost and energy-saving effect
of firms’ available low-carbon technologies. These hetero-
geneities decide the liquidity and efficiency of the mechanism,

6For clarification, there are two points regarding the terms used in this
article. First, this article uses “evolutionary training” instead of “evolutionary
learning” to emphasize the different motivations of using algorithms such as
GA in ABMs. Second, the “calibration” in this article is different from its
usual practice (fitting to observed data), but since it also concerns “finding
proper values for parameters,” the term “calibration” is still used.

Fig. 2. Flowchart of AMETS.

and at the micro level, they also indicate firms’ heterogeneous
behaviors. For example, a firm will have a stronger tendency to
reduce its output or buy allowances from others, if its available
low-carbon technologies are more expensive.

In a previous paper [8], we established an AMETS. Com-
pared with the other studies, AMETS contributes to the
modeling of ETS by considering the following complexities:
1) different planning horizons of the three abatement options;
2) heterogeneity among sectors and firms; and 3) details
of firms’ production processes and low-carbon technolo-
gies. Based on the European data from the FORECAST
model [69], AMETS is calibrated to cover five industrial sec-
tors, 11 emission-intensive products, 25 production processes,
and 52 low-carbon technologies. AMETS can be used as
a policy simulation platform for the mechanism design and
impact evaluation of the ETS. The flow diagram of AMETS
is shown in Fig. 2.

At the beginning, AMETS starts with an evolutionary
training stage to find firms’ behavioral parameters. Then,
combined with other data, the simulation stage is initialized
for one abatement phase that lasts for T periods. In each
period t , firms first compete in the output markets, where
their profits and GHG emissions are decided. Then, firms
will form their forecasts of the allowance price by observing
the other firms and the allowance price in the past periods.
Taking the forecast as a benchmark, firms will coordinate three
abatement options by comparing their cost with the forecast
and make decisions, including output adjustment, low-carbon
technology adoption, and allowance trading. For the firms with
cheaper technologies, they may adopt more than needed and
sell allowances to the other firms, while for the firms with
higher abatement cost, they will buy in the allowance market.
By the end of the abatement phase, firms’ total emissions are
verified, and those who emit more than their holdings must
pay a fine for each ton of excess emissions.

The fundamental complexity of the ETS is that firms
coordinate three abatement options at the micro level, which
then emerges into dynamic interactions among the allowance
market, output markets, and low-carbon technology diffu-
sion at the macro level. For example, when there comes
a negative demand shock in the iron and steel market, the
firms will reduce their output, as well as their demand of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



YU: AGENT-BASED FRAMEWORK FOR POLICY SIMULATION: MODELING HETEROGENEOUS BEHAVIORS 7

TABLE III

IMPACTS OF RELEVANT FACTORS ON FIRM i ’S DECISION TENDENCIES

emission allowances. Then, this may bring down the allowance
price, which may further increase the production and slow
down the technology diffusion in the other sectors.

B. Behavior Modeling

In AMETS, firms coordinate the three abatement options by
comparing their costs with a benchmark, i.e., firms’ forecast of
the allowance price. The abatement costs of the three options
are given as follows.

1) Output Adjustment: Profit of unit emission in the output
market.

2) Technology Adoption: Average abatement cost of the
low-carbon technology.

3) Allowance Trading: Current allowance price.

Besides, tendencies for choosing the three options are also
influenced by firms’ expected net allowance surplus, which is
the difference between holdings of allowances and expected
total emissions. Finally, when considering to adopt a low-
carbon technology, the tendency is also influenced by the
technologies’ absolute abatement potential in the remaining
periods.

Table III summarizes the impacts of relevant factors on
firm i ’s three tendencies. “+” and “−” indicate positive
and negative impacts, respectively. Second-order impacts are
neglected and marked with � because firms go through the
three decisions in every period. Once a decision is made in
one period, it will immediately influence the other decisions
from the next period on.

In order to synthesize the impacts of multiple factors on
firms’ tendencies for three decisions, three sets of behavioral
functions are designed based on the sigmoid function.

First, for the output adjustment decision, each firm i will
first calculate a threshold price of allowance (TPO

i,t ), which
increases with the increase of allowance price forecast (FPA

i,t )
and negatively influenced by the expected net allowance
surplus (ENAi,t ), as shown in (2), where ei is firm i ’s daily
CO2 emissions at the beginning of simulation. Then, firm
i will compare its profit of unit emission in the output
market (PUEO

i,t ) with this threshold and decides to increase
or decrease its output, if PUEO

i,t is higher or lower than TPO
i,t .

The two probabilities are �1
i,t or �2

i,t , calculated by (3) and (4),
respectively

TPO
i,t = FPA

i,t ·
[

1 + αi,1

(
1

1 + αi,2
ENAi,t /ei

− 0.5

)]
(2)

TABLE IV

VALUE RANGES OF FIRMS’ BEHAVIORAL PARAMETERS

Fig. 3. Firm i’s population of strategies in the rth generation.

�1
i,t = 2 ×

(
0.5 − 1

1 + αi,3
PUEO

i,t /TPO
i,t

)
(3)

�2
i,t = 2 ×

(
0.5 − 1

1 + αi,4
TPO

i,t /PUEO
i,t

)
. (4)

Second, for the low-carbon technology adoption decision,
each firm i ’s tendency to adopt technology j is modeled as a
probability (�i,t ) and decided by the four factors summarized
in Table III, as calculated by the following equation:

�i,t =
(

1

1 + βi,1
ACi, j /FPA

i,t

)βi,2(
1

1 + βi,3
ENAi,t /AAPi, j,t

)βi,4

. (5)

Third, for the allowance trading decision, each firm i will
follow similar procedures for output adjustment decision,
calculating a threshold price of allowance (TPA

i,t ), as shown
in (6). Then, firm i will compare the current allowance price
(P A

t,k)7 with this threshold and decides to sell or buy allowance
with a probability of �1

i,t or �2
i,t , calculated by (7) or (8),

respectively

TPA
i,t = FPA

i,t ·
[

1 + γi,1

(
1

1 + γi,2
ENAi,t /ei

− 0.5

)]
(6)

�1
i,t,k = 2 ×

(
0.5 − 1

1 + γi,3
P A

t,k/TPA
i,t

)
(7)

�2
i,t,k = 2 ×

(
0.5 − 1

1 + γi,4
TPA

i,t /P A
t,k

)
. (8)

7In AMETS, the allowance trading process is modeled based on the
continuous double auction mechanism. Each period t is further divided into
NK ticks, number by k. On each tick k, the allowance price is P A

t,k , and a
firm is selected to make a trading decision. After the matching process, firms’
allowance and cash accounts are updated.
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Fig. 4. CoV (color) of 12 × 340 = 4080 behavioral parameters of all firms: convergence in the training stage. (a) Start of the training stage. (b) End of the
training stage.

In (2)–(8), there are three sets of behavioral parameters:
1) αi,l (l = 1, 2, . . . , 4) for output adjustment decision; 2) βi,m

(m = 1, 2, . . . , 4) for technology adoption decision; and 3) γi,n

(n = 1, 2, . . . , 4) for allowance trading decision. To guarantee
the factors influencing agents’ three decisions as summarized
in Table III, the 12 behavioral parameters are set in specific
ranges, as shown in Table IV.

C. Evolutionary Training

To calibrate the behavioral parameters of the firms, an evo-
lutionary training stage is introduced based on the GA.
Following the common GA setup, values of the 12 behavioral
parameters are coded as a 60-digit binary series, which is the
“chromosome.” At the beginning of the training stage, each
firm i is randomly initialized with a population of 20 strategies.

As shown in Fig. 3, Si,r, j denotes the j th strategy of firm i
in the r th generation. For each chromosome, every five-digit
segment represents the value of one parameter. Taking αi,1 in
Si,r,1 (represented by “01001”) as an example, its mapping to
the parameter value, a decimal number in [0, 2], includes two
steps. First, map the five-digit binary number to a decimal
number and divide it by 31, which is the biggest decimal
number that a five-digit binary number can represent, and
then, we get a number x in range [0, 1]. Thus, we have:

01001 → 1 ·23 +1 ·20 = 9 → x = 9/31. Second, for different
behavioral parameters, we linearly map x to the decimal
number in its range. Thus, we have αi,1 = 0 + 2x = 18/31.

The evolutionary training stage runs as follows.
First, the training stage starts by randomly initializing firms’

first generation of strategies. In each r th generation of training,
the simulation of one abatement phase is run 20 times.
In each time, each firm i will try one strategy j in its current
population and record the final total profit (FTPi,r, j ) by the
end of the abatement phase.

Second, by the end of r th generation of training, firms
will individually update their population of strategies based on
GA and generate their new populations of strategies for the
(r + 1)th generation of training. Taking firm i as an example,
the implementation of GA includes selection, crossover, and
mutation as follows.

Third, as the training stage proceeds, firms’ behavioral
parameters at the micro level and the market results at the
macro level converge, which indicates that the training stage
comes to the end. Based on my test, the total number of
generations is set to be 50, and the results of convergence are
presented in Section IV-D. In the end, each firm i will choose
the strategy with the highest fitness in the last generation as
its strategy for the simulation stage afterward. By introducing
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Fig. 5. Market results convergence in the training stage. (a) Average allowance price. (b) Total allowance trading volume. (c) Technology adoption count.
(d) Total profit of firms.

Fig. 6. Comparison between the expected net allowance of BFSteel1 under (a) WoTS and (b) WTS scenarios.

such an individual training stage based on GA, the behav-
ioral parameters for 340 heterogeneous firms are found,8 i.e.,
12 × 340 = 4080 parameters in total.

8Based on the European data, AMETS is calibrated to cover 11 emission-
intensive products, which are further divided into 17 because of different
production processes. For each product, we set that there are 20 firms, so
340 firms in total.

D. Results
In this section, we focus on the results showing the impact

of evolutionary training on the validity of AMETS, which
are reflected in two parts: 1) convergence of firms’ behav-
ioral parameters and the market results in the training stage
(Section IV-D1) and 2) comparison between the simulation
results with and without the training stage (Section IV-D2).
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Fig. 7. Comparison between the price patterns in the allowance market under (a) WoTS and (b) WTS scenarios.

1) Convergence of Firms’ Behavioral Parameters and Mar-
ket Results: As adopted by previous studies since Ari-
fovic [28], a straightforward criterion implying validity of
“learning (i.e., training)” is convergence.

In the training stage of AMETS, firms individually update
their 12 behavioral parameters based on GA. For each firm,
in one generation of its strategies, there are 20 values for
each behavioral parameter, and the variation of one parameter
can be measured by the coefficient of variation (CoV), i.e.,
the ratio between its standard deviation and mean value.
Thus, the convergence of firms’ behavioral parameters can be
represented by the decline of CoV.

Fig. 4 shows the convergence of all 4080 behavioral parame-
ters by comparing their CoV at the start and end of the learning
stage. Each rectangle represents one of the 4080 parameters,
and its color represents the CoV value: darker color indicates
a lower CoV value. After the training stage, most behavioral
parameters have significantly converged (CoVmean declined
from 0.44 to 0.10).

At the macro level, training also leads to the convergence of
market results. Four aggregate results are selected as examples,
including average allowance price, total allowance trading
volume, technology adoption count, and total profit of firms.
As shown in Fig. 5, the training stage is run ten times with
randomly initialized firms’ seed strategies each time. After
50 generations, all the paths show significant convergence.
Besides, the ten evolution paths follow a similar pattern, which
indicates the robustness of the evolutionary training method.
As shown in Fig. 5(d), firms improved their total profit in the
training stage.

2) Comparison Between the Simulation Results With and
Without the Training Stage: Apart from the convergence,
the implication of the training stage for model validity is
also reflected by comparing the simulation results under two
scenarios, in which firms’ behavioral parameters are: 1) ran-
domly assigned without the training stage and 2) initialized
with the training stage. The two scenarios are hereafter
referred to as without training stage (WoTS) and with training
stage (WTS).

Fig. 8. Comparison between the allowance flow among sectors under WoTS
and WTS scenarios.

As introduced in Section IV-A, firms in the ETS coordinate
three options for GHG emission abatement, including output
adjustment, low-carbon technology adoption, and allowance
trading. By the end of the abatement phase, a firm will pay
a fine for each ton of excess emissions if it emitted more
than the allowances in its account. In AMETS, we assume
that the allowance cannot be used in the next phase. Then,
a smart firm will dynamically coordinate the three options,
balance its expected net allowance and the allowance in the
account, and try to exactly comply with the abatement target
by the end of the phase. Thus, we select the expected net
allowance surplus (ENAi,t ) of firms to show the rationality
of their strategies. Taking one specific firm (BFSteel19) as an
example, the evolution of its ENAi,t in the abatement phase
is presented in Fig. 6.

As shown in Fig. 6, the firm started the abatement phase
with a deficit of allowance, which represents the abatement
target of 10%. Then, each sharp increase of the curve indicates
the firm adopting one low-carbon technology. Under WoTS,

9Here, we selected the first firm in the blast furnace steel sector.
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Fig. 9. Comparison between the technology diffusion under (a) WoTS and (b) WTS scenarios.

the firm adopted five low-carbon technologies, and the last
one led to a significant surplus of the allowance, while under
WTS, the firm adopted two, meaning lower investment cost
than WoTS. By the end of the abatement phase, the firm left
more allowance in the account under WoTS than WTS. In the
end, the firm earned higher total profit under WTS than WoTS.

The implication of the training stage is also reflected by
market results at the macro level.

First, in the allowance market, we observe different price
patterns under the two scenarios. As shown in Fig. 7, when the
abatement target is set at 10%, the allowance price is higher
under WTS than WoTS. The red line represents the mean of
ten runs, and the shadow represents the range of one standard
deviation. In the training stage, firms learned the pressure of
an abatement target at 10% and become more cautious about
selling allowance.

Second, regarding the trading volume, firms with higher
abatement cost will buy allowances from those whose abate-
ment costs are lower. Thus, we observe the allowance flow
among sectors under the two scenarios, as shown in Fig. 8.
Positive allowance flow indicates buyers in the market and
negative allowance flow indicates sellers. Under WTS, the
largest buyer is BFSteel (blast furnace steel sector) and the
largest seller is Cement. As shown by the golden line, BFSteel
has a higher abatement cost than Cement. However, under
WoTS, the allowance flow between the two sectors is opposite.
Besides, as shown in Fig. 8, for the sectors with the same
trading position under the two scenarios, the absolute trading
volume is higher under WTS than WoTS, which means that
firms are clearer about their positions under WTS and trade
more sufficiently.

Finally, higher overall efficiency of ETS under WTS is
also observed in low-carbon technology diffusion. As shown
in Fig. 9, all firms’ available low-carbon technologies are
ranked according to their average abatement cost, from low
to high, as the marginal abatement cost curve (MACC) of
the system. Each step of the curve represents one technology
option. The shadowed parts indicate the technologies that are
adopted by the end of the abatement phase. Under WoTS, more

technologies with higher abatement cost are adopted leaving
the cheaper ones not adopted, indicating lower efficiency
than WTS.

V. CONCLUSION

Compared with the mainstream neoclassical economic mod-
els, ABMs have been criticized for their arbitrariness, specif-
ically, the lack of general framework for modeling agents’
behaviors, and the difficulties in ensuring the model validity.
This article tries to respond to both of the questions by
proposing a framework with two pillars: 1) using the sigmoid
function as a building block to flexibly construct agents’
decision-making rules and 2) using the evolutionary training
method to calibrate agents’ behavioral parameters and to
improve the model validity. By combining the simulation and
optimization methods, this framework balances the flexibility
and validity of ABMs and contributes to the literature on
ABM design, calibration, and application of the learning
techniques.

This framework can be applied to develop “test-bed” mod-
els for policy simulation when two conditions are satisfied:
1) the agents try to maximize some intertemporal preference
and 2) the impacts of different factors on agents’ behavioral
tendency are monotonic. Without relying on agent-level empir-
ical data, the model validity is supported by direct calibration
and evolutionary training.

Furthermore, this framework can still be coupled with
a simulation-based calibration method when empirical data
of the target system are available. The “evolutionary train-
ing” stage is essentially “solving” the model. When coupled
with the simulation-based calibration method, the overall
framework becomes comparable with the structural estimation
framework in the mainstream economics.

This framework has two limitations: 1) the two conditions
for using the framework limit its application and 2) the
“training stage” can demand long running time if the model is
complicated. Besides, when applying the framework, modelers
should also be aware of the “overtraining” problem, i.e., the
agents could be trained to be “too smart.” In some cases,
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it could be helpful to stop the training stage earlier or leave
part of the agents not trained.

To support the framework validity, further studies and
results comparison are helpful: 1) applying the framework
to other modeling cases; 2) using other function forms with
similar properties of the sigmoid function; and 3) using other
evolutionary algorithms other than GA [e.g., particle swarm
optimization (PSO)] for training the behavioral parameters.
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