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 A B S T R A C T

The building sector is pivotal for achieving climate neutrality, requiring sophisticated modeling tools to 
guide the energy transition. It is highly heterogeneous with variety in both the built environment and in 
its decision-makers. While many sectoral models exist, most of them fall short of capturing the barriers 
and limitations in the energy transition as they lack high spatial resolution and a detailed representation 
of heterogeneous building characteristics and local infrastructure constraints. To address this gap, we present 
RENDER-Building, a new agent-based model (ABM) designed for high-resolution analysis of building stock 
transformation. We validate and apply the model to the German building stock to simulate potential 
transformation pathways until 2050 under three distinct scenarios. The individual buildings are the agents 
here with detailed attributes, located in a settlement type in a NUTS3 region. The model explicitly considers 
the availability of energy infrastructure and simulates agents’ decisions about renovation and technology 
adoption based on bounded rationality. Our case study’s results indicate that even with ambitious measures, 
Germany’s building sector may miss its short-term emission targets due to the inertia of the existing stock. A 
transformation pathway considering realistic challenges could substantially exceed the short- and long-term 
emission targets, necessitating difficult and potentially costly interventions to get back on track. Our study 
demonstrates the utility of high-resolution ABMs in providing nuanced, actionable insights for policymakers, 
helping them to navigate the complexities of the building sector’s energy transition.
1. Introduction

Buildings account for 40% of the final energy consumption in the 
EU and 36% of its greenhouse gas (GHG) emissions [1]. As such, the 
building sector is a significant part of the energy system and plays 
a crucial role in the transition to a climate-neutral energy system. 
Model-based scenario analyses that comprehensively integrate policy 
measures are essential for projecting transition pathways and support-
ing effective policymaking. Numerous models have been developed to 
analyze the building sector with a particular focus on energy use, de-
carbonization pathways, and policy impacts. These models range from 
global-scale assessments to national and regional analyses, employing 
various methodological approaches. Global models have focused on the 
development of the building stock considering renovation potential [2], 
household energy use [3,4] and emission targets [5]. European studies 
have delved deeper into policy options and building stock dynam-
ics [6], and include country-specific analyses for France [7], Italy [8], 
Switzerland [9], United Kingdom [10] and Germany [11–16]. The 
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energy transition of the building sector is fundamentally character-
ized by a large number of decision-makers, whose behavior is highly 
heterogeneous as are the characteristics of their buildings. In the EU, 
the rate of home ownership varies drastically by member state (47% 
in Germany up to 94% in Romania), and 23% of the homeowners 
in Germany have an income below 60% of the median equivalised 
income [17]. Furthermore, within Germany, not only do the rate of 
ownership and income level vary by federal state, the building stock 
itself varies drastically as well in terms of the number of dwellings 
within a building, dwelling size, construction period, renovation state 
and the technologies used such as the heating system [18]. Agent-based 
modeling is particularly suited to representing this highly heteroge-
neous sector. It enhances the understanding of buildings at the agent 
or representative building level and model the interactions between 
buildings and their users within their respective environments. A signif-
icant proportion of recent research has utilized agent-based modeling 
to capture the complex interactions between buildings, their users, and 
the environment [19–33]. However, local and regional characteristics 
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have been largely overlooked in national or global building sector mod-
els. Most critically, the availability of heating infrastructure, such as 
district heating and gas distribution networks, has often been assessed 
at an aggregated national level, which tends to simplify the complex re-
gional dependencies of the building stock on the relevant infrastructure. 
Previous analyses in other fields have demonstrated the importance of 
detailed spatial considerations in quantitative evaluations [34,35].

Against this background, we developed the RENDER-Building model 
and integrated novel data sources. RENDER is an agent-based eneRgy 
dEmaNd moDeling framEwoRk developed using two open source
Python packages: Melodie1 and tab2dict.2 Applying the RENDER frame-
work, RENDER-Building is an agent-based model for the building 
sector, which captures the heterogeneity among buildings (agents) and 
bounded rationality in decision-making processes [37]. Leveraging the 
flexibility of the agent-based framework, RENDER-Building advances 
modeling the transformation pathways of the building sector through 
the following contributions:

• Apart from assigning heterogeneous attributes such as building 
type, construction year, building geometry, and building enve-
lope efficiency, this model also has high spatial resolution. Each 
building agent is assigned a ‘‘location type’’, which is defined as 
one of seven settlement types (urban center, dense urban cluster, 
semi-dense urban cluster, suburban or peri-urban, rural cluster, 
low-density rural, and very low-density rural), and allocated to a 
specific NUTS 3 region [38]. The data are the result of aggregat-
ing the hectare-level data in the global human settlement layer 
(GHSL)3 dataset [39].

• Benefiting from the first point, the development of infrastructure 
(including district heating, gas distribution, hydrogen distribution 
networks) is considered at the same spatial resolution to better 
reflect the potential of the corresponding infrastructure-bound 
heating technologies, as well as other competing technologies.

• Building agents are assigned living/working units and unit users 
whose characteristics and behaviors are considered. A discrete 
choice model is applied to represent bounded rationality in in-
vestment decisions for renovations, technology installations and 
modernizations. The ‘‘rebound effect’’ in heating behavior is also 
considered [40].

The model is tested and validated by applying it to a case study 
of the transformation of the German building stock. In the case study, 
the transition pathways of the German building sector are simulated 
under three different scenarios – sustainable transformation, challenged 
transformation, and limited transformation – that were developed using 
a participatory process in the RokiG2050 project4 [41]. Data for this 
process were collected in workshops, extended by literature reviews 
and then validated again in workshops. The rest of this paper is 
organized as follows. In Section 2, we review the literature on building 
stock modeling from both methodological and policy perspectives. 
Section 3 introduces the RENDER-Building model, including the over-
all framework, building agent initialization, and simulation processes. 

1 Melodie is an open source general framework for agent-based modeling 
in Python [36], available at: https://github.com/ABM4ALL/Melodie.

2 tab2dict is a data management tool designed for model development in 
Python, especially for developing agent-based models. The package is open 
source at https://github.com/ABM4ALL/tab2dict.

3 The Global Human Settlement Layer (GHSL) project is supported by 
the European Commission, Joint Research Centre and Directorate-General for 
Regional and Urban Policy. The GHSL produces new global spatial information, 
evidence-based analytics, and data describing the human presence on the 
planet. Website: https://human-settlement.emergency.copernicus.eu/.

4 Roadmap for a climate-neutral building stock (RokiG2050) under the 
Accompanying Scientific Research Energiewendebauen (BF2020) — Mod-
ule Buildings. Project details can be found at https://www.ebc.eonerc.rwth-
aachen.de/go/id/qfkxc/lidx/1.
2 
Section 4 presents the case study for Germany, explains how the 
transition scenarios are defined for the German building sector, and 
how they are quantitatively modeled. The simulation results are pre-
sented in Section 5. Finally, discussions and conclusions are provided 
in Section 6.

2. Literature review

The building sector’s transition to climate neutrality has been exten-
sively studied using various modeling approaches. This section reviews 
building sector models. Table  1 summarizes the literature, comparing 
the studies’ sectoral/spatial scope and resolution, as well as their 
consideration of infrastructure and decision-maker/occupant character-
istics.

There are three important aspects to consider when modeling and 
analyzing the building sector’s transition toward climate neutrality: 
dynamics of the stock (buildings and technologies), characteristics of 
the users/occupants, and the building’s local environment including 
infrastructure availability. Sectoral studies not using an agent-based 
approach (in Table  1) feature a mixed integration of decision-maker/oc-
cupant characteristics (7 out of 15 studies), but commonly neglect 
infrastructure characteristics, except for [14,15]. A few studies, such 
as [3,16], analyzed the socioeconomic and distributional impacts of 
a sectoral transition by integrating decision-maker/occupant charac-
teristics without explicitly modeling the life cycle dynamics of tech-
nology and building components. Others model these dynamics and 
integrate decision-maker characteristics without considering the local 
environment/infrastructure availability [4,7]. Building sector models 
fall short of understanding the barriers and limitations here if they do 
not explicitly consider the dynamics of stock and decision-maker/occu-
pant characteristics together with the local environment/infrastructure 
availability. This is why enhancing the understanding of buildings at 
the level of an individual or representative building is important to 
identify levers that can overcome barriers.

Agent-based models (ABMs) characterize physical, social, biologi-
cal, and economic systems from a bottom-up perspective through the 
dynamic interactions between agents. They have the advantage of 
depicting large heterogeneous systems through the actions of the actors 
involved as well as their interactions with each other and with the 
environment [42]. As the building sector is highly heterogeneous, this 
modeling approach is very suitable. Modeling buildings at the level 
of individual or representative buildings can capture barriers to the 
energy transition in the sector and ways to overcome them. Insights 
from previous studies using ABMs show the importance of policies that 
consider household characteristics and attitudes in decision-making 
in residential buildings. For example, financial incentives may drive 
economically-motivated decisions but can fall short if social and psy-
chological factors dominate decision-making [24]. In addition, invest-
ment grants are found to be suitable for ‘‘pensioners’’ and low-interest 
loans for ‘‘younger people’’, and the greatest exploitable potential to 
reduce CO2 emissions can be approximately half the technical potential 
due to barriers such as lack of financing options, information deficits, 
and unwillingness to renovate [27]. Policy mixes should address the di-
verse needs of consumer groups to be more effective [33] and the right 
information should be provided to households at the right time [23], 
all of which are possible to capture in ABMs.

However, agent-based building sector models on a national or global 
scale do not allow the depiction of the building stock’s local and 
regional characteristics such as locally available resources. Most crit-
ically, the availability of heating infrastructure, such as district heating 
and gas distribution networks, has either not been considered (5 out 
of 12 studies in Table  1) or often been considered at an aggregated 
national level (5 out of 12 studies in Table  1), which tends to simplify 
the complex regional dynamics of the building stock and the relevant 
infrastructure. Even when household characteristics are considered 
representatively at the municipal level, such as in the case of [27], 
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Table 1
Overview of existing studies in the field and their methodological approach.
 Reference Sector Spatial scope, resolution & characteristics Infrastructure 

characteristics
Decision-maker/occupant characteristics  

 

Bu
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r s
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 no

t u
sin
g A

BM
s Zhang et al. [2] Res. & NRes. Global, continental or national, – – –  

 Daioglou et al. [3] Res. Five developing world regions, 26 world 
regions, urban & rural

– Income quintile  

 Daioglou et al. [4] Res. Global, 26 world regions, urban & rural – Income quintile  
 Camasara et al. [5] Res. & NRes. Global, continental or 

national/sub-national climate zones, –
– –  

 Uihlein & Eder [6] Res. EU27, national – –  
 Charlier & Risch [7] Res. France, national, – – Size, income quintile, tenure, disposable 

income, saving rate, borrowing power
 

 Bianco & Marmori [8] Res. Italy, national, – – –  
 Streicher et al. [9] Res. Switzerland, 26 cantons, urban & 

suburban & rural
– –  

 Li et al. [10] Res. United Kingdom, national, – National Existing technology, number of 
bedrooms

 

 McKenna et al. [11] Res. Germany, 2 sub-national regions (old & 
new federal states), –

– Number of households  

 Henkel [12] Res. Germany, national, small village & 
others

– Income, preference for space 
requirement

 

 Elsland [13] Res. Germany, national, – – –  
 Bauermann et al. [14,15] Res. Germany, national, – National –  
 Hornykewycz et al. [16] Res. Germany, national, – – Income  
 

Bu
ild
in
g s
ec
to
r s
tu
di
es
 us

in
g A

BM
s Zhao et al. [19,20] NRes. Midwest (US), building-specific, – –a –  

 Maya Sopha et al. [21] Res. Norway, sub-national regions, 3 location 
types by density

– Income, decision strategy, degree of 
social influence, number of peers

 

 Sachs et al. [22] Res. United Kingdom, national, – – GDP per capita/household, age, 
education level, employment

 

 Nägeli et al. [25,26] Res. Switzerland, national, – National Size, discount rate, willingness to pay  
 Stengel [27] Res. Germany, sub-national, 4–5 location 

types by population
– Income, tenure  

 Müller [28] Res. & NRes. Austria, sub-national (2380 
municipalities), settlement areas

Federal state Income, preference for heating system  

 Kranzl et al. [29] Res. & NRes. Austria & Lithuania & United Kingdom, 
national, urban & rural

National, based on 
location type

Preference for heating system  

 Kranzl et al. [30] Res. & NRes. EU28, national, – National Income, discount rate  
 Kranzl et al. [31] Res. & NRes. Germany, national, urban & rural National, based on 

location type
Same as [32]  

 Steinbach [32] Res. & NRes. Germany, sub-national (municipality), 
settlement type

Municipality Investor type: private landlord, 
owner-occupier, joint-owner, housing 
association; decision factors: information 
awareness, income, age, risk aversion, 
energy price perception

 

a Considers the electricity network at city/state-scale, not the heating infrastructure.
heat system modernization packages do not consider infrastructure or 
resource availability with the same spatial resolution. Recognizing the 
importance of this factor, Steinbach integrated infrastructure availabil-
ity into his analysis using Invert/EE-Lab, although the most recent data 
available at that time were from 2011 [32]. In contrast, if ABMs are 
applied on a much smaller scale, such as in the case of [24], it can be 
difficult to draw holistic conclusions for a regional entity.

We developed RENDER-Building to address the research gap con-
cerning this trade-off between local, detailed representation and
system-level implications. With this study, we intend to address the 
following research questions: (1) How can building stock transfor-
mation be effectively modeled through the simulation of building 
stock dynamics while integrating regional and decision-maker/occu-
pant characteristics and novel data sources? (2) What conclusions can 
be drawn about the building stock of large entities like countries or 
sub-national regions such an integrated modeling approach?
3 
3. Methodology

Section 3.1 introduces the model framework, followed by the details 
about the building agent initialization (Section 3.2) and the simulation 
processes (Section 3.3).

3.1. Model framework

RENDER-Building is implemented with Melodie [36], an open-
source general framework for agent-based modeling in Python. There 
are five main components in ABMs developed with Melodie. First is 
‘‘Model’’, which encompasses the following four: (1) ‘‘Environment’’, 
which coordinates the agents’ decision-making processes and interac-
tions; (2) ‘‘AgentList’’, which saves the data and logic of individual 
agents; (3) ‘‘Scenario’’, which imports input data into the model and can 
be accessed by the environment and each agent; (4) ‘‘DataCollector’’, 
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Fig. 1. Workflow of the RENDER-Building model.
which collects the model’s micro- and macro-level results. In addition, 
Melodie also provides two optional components: (1) ‘‘Calibrator’’, 
which can calibrate multiple macro-level parameters of an ABM by min-
imizing the distance between model output and a pre-defined target; (2) 
‘‘Trainer’’, which can train the behavioral parameters of agents using a 
genetic algorithm [42]. Unlike the popular ABM framework Mesa [43], 
which organizes the simulation logic around the ‘‘step()’’ function of 
individual agents, Melodie organizes the simulation workflow with the 
environment object. The workflow of RENDER-Building is shown in Fig. 
1.

As shown, the model takes five categories of input data.

1. Building stock data: number of buildings by region, sector and 
type; share of buildings by construction period and settlement 
type; number of apartments and floor area by building type; 
building envelope U-values and lifetime of building components.

2. Occupant behavior data: population, socio-demographic structure, 
number of households by household size, number of employees 
by sector, demand profiles of appliances and hot water.

3. Technology stock data: shares of heating systems and technolo-
gies in the building stock, penetration rates of other technolo-
gies including cooling, ventilation, and solar PV, and efficiency 
coefficients of technologies.

4. Policy and energy price scenarios: taxes and subsidies, efficiency 
classes and minimum energy performance standards for building 
components, technology bans, energy carrier prices, and CO2
prices.

5. Technology and weather scenarios: availability of infrastructure 
(district heating, gas grid, hydrogen grid), costs and efficiency 
of heating technologies, penetration pathways of other tech-
nologies (cooling, ventilation, and solar PV), technology stan-
dards for new buildings, projection of ambient temperature and 
radiation profiles for future years.

Based on the input data, the ‘‘environment’’ coordinates the ‘‘build-
ing agents’’ through a series of processes in each simulation year. After 
initialization, the building agents update their renovation status, in-
frastructure availability, energy demand for appliances and hot water, 
adoption of other technologies, and their heating systems. Then, old 
buildings are demolished, and new buildings are constructed accord-
ing to the socio-demographic development. Finally, based on all the 
data from the building agents and the environment, output files are 
produced, including final energy demand by carrier and end-use, CO2
emissions, historical retrofits of buildings and their heating systems, 
as well as the detailed information of each building agent in each 
simulation year.
4 
3.2. Building agent initialization (step 0)

Leveraging the flexibility of ABM, the building agents in RENDER-
Building are initialized in detail as shown in Fig.  2. First, we defined 
four basic IDs that are assigned to each agent and then used for further 
initialization to organize the data from different sources for initializing 
the building stock. Each combination of the four basic IDs corresponds 
to one segment of the building stock, for which we estimated the 
number of buildings (𝑁𝑟𝑒𝑎𝑙).

1. id_region: the geographic region where the modeled buildings 
are located.

2. id_sector: residential (Res.) and non-residential (NRes.) sectors.
3. id_subsector: residential sector and 16 non-residential sectors 
A-S according to NACE, rev. 2 [44].

4. id_building_type: 5 residential building types according to total 
number of dwellings in the building, and 11 non-residential 
building types such as office buildings, educational buildings, 
etc.

Second, for each building segment, we define a coverage rate 𝜆 and 
use 𝑁𝑚𝑜𝑑𝑒𝑙 = 𝜆𝑁𝑟𝑒𝑎𝑙 agents for representation. These building agents 
are further assigned the heterogeneous properties and data below. In 
our previous paper [45], we described how the data from different 
sources are harmonized to initialize the building stock in Germany with 
detailed technological information at high spatial resolution.

5. id_building_construction_period: from ‘‘before 1900’’ to ‘‘after 
2011’’ at ten-year intervals.

6. id_building_location: seven settlement types defined by GHSL
[39], including urban center, dense urban cluster, semi-dense 
urban cluster, suburban or peri-urban, rural cluster, low density 
rural, very low density rural.

7. id_building_height: height (number of floors) is assigned to 
buildings based on GHSL data.

8. Building components: four components are considered for each 
building agent in the model: roof, wall, window, and base-
ment. Their U-values are assigned according to the building type 
and construction period. Then, by assuming a set temperature 
of 20 ◦C, the heating and cooling demand are calculated for 
the building in hourly resolution following the 5R1C approach 
(DIN ISO 13790). According to the calculated heating demand,
id_building_efficiency_class is then assigned to the building 
and used to update the real set temperature for the building to 
reflect the ‘‘rebound effect’’, i.e., more efficient buildings have a 
higher set temperature [40].
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Fig. 2. Data structure of building agents.
9. Heating system: Four types of heating system are considered in 
the model: district heating, central/block heating, dwelling/floor 
unit heating, and single-room heating. These heating system 
types encompass 23 heating technologies, including heat pumps 
with different heat sources, as well as boilers with different 
energy carriers. Finally, the model considers the availability of 
infrastructure, e.g., district heating, gas grid, and hydrogen grid.

10. Other technologies: For a more comprehensive coverage of end-
uses, the model also accepts exogenous input for the penetration 
pathways of ventilation, solar PV, and cooling technologies. 
Their energy demand or generation are calculated accordingly, 
e.g., electricity generation from solar PV is calculated according 
to the roof size of the building.

11. Units: Based on building type, we assign the number of liv-
ing/working units to the building and then the type of unit 
user to the unit. For residential buildings, the unit users are 
five types of household: single-person, couple without resident 
child(ren), couple with resident child(ren), single parent with 
resident child(ren), and other households (e.g., shared apart-
ment). For non-residential buildings, the unit users are com-
panies/entities from specific sectors. Then, all unit users are 
assigned a number of persons and profiles of appliance en-
ergy demand, hot water demand, and building occupancy. The 
profiles are further aggregated to the building level.

After initialization, the building agents go through a series of pro-
cesses, as described in Section 3.3.

3.3. Simulation processes

3.3.1. Building renovation (step 1)
The model defines each building agent as having four components: 

roof, wall, window, and basement. Renovation is modeled at the level 
of building components, i.e., when one component reaches its end-of-
life, it will be replaced, and the U-value of this component is adjusted. 
The heating and cooling demand of the building agent is updated im-
mediately after renovation. For each building component, we consider 
12 efficiency classes with different U-values from A+++ to ‘‘very poor’’ 
(see Table  2).

To model efficiency improvements and regulation policies, we com-
pile a table with the efficiency class options available on the market 
5 
Table 2
U-values of building components in different efficiency classes.
 Efficiency class Unit Wall Window Roof Basement 
 A+++ W∕m2 K 0.1 0.6 0.1 0.1  
 A++ W∕m2 K 0.15 0.7 0.15 0.2  
 A+ W∕m2 K 0.2 1.0 0.18 0.25  
 A+ W∕m2 K 0.25 1.2 0.2 0.3  
 B W∕m2 K 0.3 1.4 0.25 0.35  
 C W∕m2 K 0.5 1.6 0.3 0.45  
 D W∕m2 K 0.65 1.8 0.4 0.55  
 E W∕m2 K 0.8 2.0 0.5 0.65  
 F W∕m2 K 1.0 2.5 0.6 0.75  
 G W∕m2 K 1.2 3.0 0.9 0.85  
 H W∕m2 K 1.6 4.0 1.0 1.0  
 Very poor W∕m2 K 2.0 5.0 2.0 2.0  

each year. We also distinguish the availability of options for ‘‘conven-
tional renovation’’, ‘‘serial renovation’’ and ‘‘construction’’ activities, 
so that (1) newly constructed buildings can have higher efficiency 
standards than the renovation options for existing buildings, and (2) 
the difference between ‘‘conventional renovation’’ and ‘‘serial renova-
tion’’ can also be captured. This table starts from 1900 to cover old 
buildings constructed and renovated before the simulation’s starting 
year, i.e., when initializing the building stock in the starting year, 
we consider historical building construction and renovation, and the 
corresponding years are documented. Two attributes are defined for 
each building component in each building to track its life cycle: ‘‘in-
stallation_year’’ and ‘‘next_replace_year’’. The difference between the 
two attributes is the lifetime of the building component, drawn from 
a predefined interval based on [46].

When an agent is triggered to consider the renovation of one build-
ing component because this has reached its end-of-life, the agent will 
first go to the market and find the available options. Then, the levelized 
cost of each available option 𝑖 and renovation type 𝑗 (conventional 
or serial) (𝐿𝐶𝑖,𝑗) is calculated based on (1) interest rate (𝑟), (2) unit 
investment expenditure (𝐼𝐸𝑈𝑖,𝑗), (3) the area of the component (𝐴), (4) 
expected lifetime of the building component (𝐿𝑇 ), and (5) the energy 
cost saving due to renovation (𝐸𝐶0 −𝐸𝐶𝑖) — 𝐸𝐶0 refers to the energy 
cost before renovation and 𝐸𝐶𝑖 refers to the energy cost if option 𝑖
is installed (Eq.  (1)). The investment expenditure is calculated based 
on material costs (𝑀𝐶𝑖), labor demand (𝐿𝐵𝐷𝑖,𝑗), labor costs (𝐿𝐵𝐶𝑖,𝑗), 
and the subsidy rate (𝑠𝑢𝑏𝑖,𝑗) (Eq.  (2)). As indicated by Eqs. (1) and (2), 
the type of renovation impacts material and labor costs, but not the 
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U-values and lifetime of the components. Finally, according to 𝐿𝐶𝑖,𝑗 of 
all available options and renovation types, the building agent will select 
one of them following Eq.  (3), i.e., higher cost (𝐿𝐶𝑖,𝑗) means a lower 
probability (𝑃𝑖,𝑗) of selection. This probabilistic form of discrete-choice 
modeling reflects the bounded rationality [37] of the building agents 
in the model.5

𝐿𝐶𝑖,𝑗 =
𝑟 × 𝐼𝐸𝑈𝑖,𝑗 × 𝐴

1 − (1 + 𝑟)−𝐿𝑇
− (𝐸𝐶0 − 𝐸𝐶𝑖) (1)

𝐼𝐸𝑈𝑖,𝑗 = (𝑀𝐶𝑖,𝑗 + 𝐿𝐵𝐷𝑖,𝑗 × 𝐿𝐵𝐶𝑖,𝑗 ) × (1 − 𝑠𝑢𝑏𝑖,𝑗 ) (2)

𝑃𝑖,𝑗 =
𝑒−𝛽𝐿𝐶𝑖,𝑗

∑

𝑖,𝑗𝑒
−𝛽𝐿𝐶𝑖,𝑗

(3)

Once the final decision has been made, the building’s heating and 
cooling demand are updated based on the U-value of the new compo-
nent. The ‘‘installation_year’’ and ‘‘next_replace_year’’ of this component 
are also updated. In addition, the model collects the information about 
the renovation and saves it in the ‘‘Building retrofits’’ output file (Fig. 
1) for further analysis. This includes the costs of the selected option, 
as well as the heating and cooling demand of the building before and 
after the renovation.

3.3.2. Infrastructure development (step 2)
RENDER-Building considers three types of infrastructure: district 

heating, gas grid, and hydrogen grid. The availability of these three 
types of infrastructure is defined as exogenous scenario input. To 
achieve adequate spatial resolution, the availability ratio is based on 
two IDs: id_region and id_building_location. In each simulation year, 
it is checked whether the building agents have these three infrastruc-
tures available. If not, a probability is calculated based on the avail-
ability ratio in the previous and the current year, given the building’s
id_region and id_building_location. Then, according to this probabil-
ity, we update the corresponding attributes of the building’s heating 
system: ‘‘district heating availability’’, ‘‘gas grid availability’’, ‘‘hydro-
gen grid availability’’ (see Fig.  2). The availability of infrastructure 
is the prerequisite for a building agent selecting the corresponding 
technology when possible (see Section 3.3.5).

3.3.3. Update appliance energy and hot water demand (step 3)
As shown in Fig.  2, each building agent contains a number of 

working/living units. For residential buildings, the number of living 
units depends on the building type. For non-residential buildings, we 
assume there is only one working unit, and for simplicity, we do 
not consider that a non-residential building is occupied by firms from 
multiple sectors.

We assign the number of persons to each living/working unit. Each 
person has a specific energy demand for appliances and hot water. Note 
that the energy demand for appliances refers to final energy demand, 
while that for hot water refers to useful energy demand, because 
the final energy demand for hot water is calculated endogenously 
together with the heating system. RENDER-Building does not model the 
appliance technology stock endogenously but takes exogenous scenario 
input from other models. The same applies to the useful energy demand 
for hot water. In every simulation year, we update the values of the two 
end-uses according to the scenario input.

In addition, for hourly temporal resolution, we consider the profiles 
of the energy demand for appliances and hot water, i.e., the annual 
demand is allocated to 8760 h in the year according to predefined 
profiles based on the HOTMAPS project.6 The profiles are also updated 
in this simulation process.

5 Sensitivity runs for the discrete-choice parameter, 𝛽, are presented 
in Appendix.

6 HOTMAPS is an EU-funded project aiming to develop a toolbox that 
supports local, regional and national heating and cooling planning processes. 
The project also developed generic electricity load and hot water demand 
profiles for different sectors. The results can be found at: www.hotmaps-
project.eu.
6 
3.3.4. Technology diffusion: cooling, ventilation, and PV (step 4)
For complete coverage of the end uses in the building sector, 

RENDER-Building uses simplified modeling for the diffusion of cooling, 
ventilation, and PV technologies. Using exogenous penetration rates as 
input, the building agents are coordinated by the environment in each 
simulation year to check whether they have adopted these technolo-
gies. Then, if not, an adoption probability is calculated based on the 
penetration rate in the previous and current year, given the building’s
id_region, id_sector, and id_subsector. We consider seven efficiency 
classes for cooling and ventilation technologies, from which building 
agents choose one following the discrete-choice approach. The size 
of the cooling system required depends on the peak cooling demand 
calculated using the 5R1C approach. The size of the ventilation system 
required depends on the total living area in the building. Furthermore, 
the size of the PV system depends on the building’s roof area.

3.3.5. Heating system modernization (step 5)
In RENDER-Building, a building agent’s heating system is modeled 

as a combination of a ‘‘main’’ technology and an optional ‘‘second’’ 
technology. The model considers four types of heating system (district 
heating, central/block heating, dwelling/floor unit heating, and single-
room heating), 23 main technologies distinguished by type of energy 
carrier, and two second technologies (solar thermal and electric heater). 
If there is a second heating technology, space and water heating are 
shared by the two technologies, as indicated by the two attributes in 
Fig.  2: ‘‘contribution factor (space)’’ and ‘‘contribution factor (water)’’. 
Every building agent is assigned a main heating technology and some 
are assigned a second heating technology in the initialization process. 
Then, a building agent is triggered to replace the heating technology as 
soon as its end-of-life is reached. For simplicity and due to the lack of 
data, we only consider agents replacing the main heating technologies. 
In this process, the impact of infrastructure availability and technology 
ban policies are modeled. Each building agent goes through the steps 
shown in Fig.  3.

• First, the building agent checks the available heating technologies 
on the market in the current simulation year. These technologies 
are added to the option list. To model regulatory restrictions 
in technology choice, we developed a scenario table informing 
the model which heating technologies are available in which 
simulation years.

• Second, the agent checks infrastructure availability: district heat-
ing, gas grid, and hydrogen grid. If a specific infrastructure is not 
available, the agent removes the corresponding technologies from 
the option list.

• Third, for each technology 𝑛 in the option list, as shown in Eq.  (4), 
the agent calculates the levelized cost (𝐿𝐶𝑛). This is based on (1) 
interest rate (𝑟); (2) initial expenditure for each unit of capacity 
invested (𝐼𝐸𝑈𝑛), considering both material and labor costs and 
distinguishing three cases: new installation, replacement with the 
same type of system, and replacement with a different type of 
system; (3) capacity of the heating technology (𝐶𝐴𝑃 ), determined 
as the 90th percentile of the 8760 hourly heat demand (the sum of 
space and water heating) values over the year, to avoid unrealistic 
oversizing due to peak hours; (4) expected lifetime of the heating 
technology (𝐿𝑇𝑛); (5) subsidy rate (𝑠𝑢𝑏𝑛); (6) energy cost (𝐸𝐶𝑛), 
depending on the efficiency of the heating technology and the 
price of the corresponding energy carrier, including taxes and CO2
emission price; and (7) operation and maintenance cost (𝑂𝑀𝐶𝑛).

𝐿𝐶𝑛 =
𝑟 × 𝐼𝐸𝑈𝑛 × 𝐶𝐴𝑃
1 − (1 + 𝑟)−𝐿𝑇𝑛

× (1 − 𝑠𝑢𝑏𝑛) + 𝐸𝐶𝑛 + 𝑂𝑀𝐶𝑛 (4)

• Finally, the agent calculates the selection probability (𝑃𝑛 =
𝑒−𝛽𝐿𝐶𝑛∕

∑

𝑛𝑒
−𝛽𝐿𝐶𝑛 ) of the available heating technologies, with 

this probability-based discrete-choice approach representing its 

http://www.hotmaps-project.eu
http://www.hotmaps-project.eu


Ş. Alibaş et al. Advances in Applied Energy 20 (2025) 100256 
Fig. 3. Illustration of the decision-making process for replacing the heating technology with exemplary assumptions.
‘‘bounded rationality’’.7 Then, after installing the technology, the 
agent updates the id_heating_technology and id_energy_carrier
of its heating technology, as well as the attributes ‘‘efficiency’’, 
‘‘installation year’’, and ‘‘next replace year’’ (Fig.  2).

All the actions of heating system modernization are collected by 
the model and saved in the ‘‘Heating Retrofits’’ output file (Fig.  1) 
for further analysis. This includes the costs of the selected heating 
technology, as well as the components of the replacement cost.

3.3.6. Building demolition and construction (steps 6 & 7)
When initializing the building stock in the starting year of the sim-

ulation, we assigned each building agent two attributes: ‘‘construction 
year’’ and ‘‘demolition year’’. Once a building reaches its end-of-life, it 
is demolished.

For non-residential buildings, we assume the number of new build-
ings matches the number of demolished ones, with all their properties 
unchanged except for efficiency standards. For residential buildings, the 
model calculates the number of remaining dwellings after the demoli-
tion process, then calculates the number of new residential buildings 
that need to be constructed. The demand for dwellings is calculated 
by considering socio-demographic changes, for example, a rise in the 
proportion of single-person households will require a larger number 
of dwellings. We also define the percentages of different residential 
building types that are planned to be constructed each year in the 
scenario input. Finally, the newly constructed residential buildings will 
have different efficiency standards based on the efficiency classes of 
different building components assumed to be available in that year.

4. Case study: Germany

The building sector in Germany accounts for 16% of GHG emissions, 
as outlined in the Federal Climate Action Act (KSG) [47]. With over 
70% of heating dependent on fossil fuels, this sector plays a crucial role 
in Germany’s transition to green energy. The KSG established sector-
specific emission reduction targets for 2030, aiming to decrease GHG 
emissions in the building sector to 67 MtCO2eq, which is nearly half 

7 Sensitivity runs for the discrete-choice parameter, 𝛽, are presented 
in Appendix.
7 
that of recent levels. Although the targets are not binding for individ-
ual sectors but rather for overall cross-sectoral emissions, substantial 
sectoral transformation is needed to achieve this target. We recognize 
the necessity of exploring scenarios that consider challenges, such as 
supply chain disruptions, societal trends and opposition, regulatory 
compliance, and financial obstacles. Our goal is to illustrate the range 
of uncertainty influencing sectoral emission pathways while accounting 
for these factors.

In our case study, we apply the RENDER-Building model to Germany 
and validate it. Applying the model enables us to achieve our above-
mentioned goal, as the heterogeneity of the building stock and its actors 
are captured at high spatial resolution. We chose a coverage rate of 
𝜆 = 5% (see Section 3.2)8 and RENDER-Building covers around 1.1 M 
agents to represent the residential and non-residential building stock of 
Germany at NUTS3 resolution. Multiple data sources are harmonized to 
initialize the building stock, including the TABULA database [48,49], 
Census 2022 and 2011 [18,50], GHSL [39], and public reports [51–54]. 
The availability of gas and district heating networks is based on the 
hectare-level census data for the base year, then assumed for future 
years under different scenarios. The key economic parameters used to 
calculate investment expenditures are based on prior research [13,55]. 
The simulation begins in 2010 and runs with an annual timestep. 
Section 4.1 presents the validation of our model, Section 4.2 introduces 
the scenarios analyzed in the case study, and Section 5 presents the 
results.

4.1. Model validation

To validate the model, we compared the model’s results with pub-
licly available statistics (or statistically representative data) for differ-
ent year ranges between 2010 and 2023. Renovation rates (total and 
specific to building components) and the stock’s energetic performance 
are shown for the validation of residential buildings, while final energy 
demand at national and federal state levels is used for the validation of 
the entire building stock.

8 We initialized the model five times with 𝜆 = 5% and computed the relative 
deviation of the entire building stock’s useful heating demand in the base year; 
the deviation was 0.056%, indicating that 𝜆 = 5% is sufficient to ensure model 
stability.
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Table 3
Overall and component-specific renovation rates between 2010 and 2015.
 Unit Overall Wall Window Roof Basement  
 Model results % 1.04 0.85 1.68 1.60 0.43  
 Reference data [51] % 1.06 ± 0.08 0.87 ± 0.07 1.88 ± 0.11 1.60 ± 0.10 0.39 ± 0.04 
Fig. 4. Distribution of buildings by theoretical specific energy demand intervals: model (left) and reference (right) [53].
4.1.1. Renovation rates and the energetic performance of residential build-
ings

The renovation rates for a specific period can be derived from the 
renovation activities of buildings in the model. Table  3 shows the 
overall and component-specific renovation rates for the period 2010 
to 2015. We followed the definition of renovation rate published by 
IWU [51]. The overall and component-specific renovation rates in the 
model approximate the values in the reference data. This demonstrates 
the strength of the model in simulating the renovation activities.

A building’s specific energy demand for space heating is an indi-
cation of its energetic performance. Fig.  4 shows the distribution of 
buildings in the stock by specific energy demand intervals, alongside 
the reference distribution published by dena for the year 2014 [53]. We 
only show the distribution of residential buildings, as non-residential 
buildings are very heterogeneous and there are insufficient data avail-
able for comparison. The comparison for residential buildings reveals 
that there are fewer buildings that belong to the two highest and two 
lowest specific energy demand intervals in the model. However, as 
buildings with a specific energy demand up to 50 kWh/m2 make up a 
smaller share of the stock, the difference between the modeled stock 
and the reference data in these intervals is negligible. Moreover, in 
reality, buildings with a theoretical specific energy demand for heating 
of more than 200 kWh/m2 consume approximately 30% less energy for 
heating [53]. This phenomenon is tackled later in the model calculation 
by calibrating the consumption behavior of residents who live in these 
‘‘inefficient’’ houses, as explained in 3.2. This approach means the 
modeled building stock converges to the real building stock in terms 
of its final energy demand by capturing consumption behavior.

4.1.2. Final energy demand
The final energy demand of the modeled building stock is compared 

with national statistics. Due to data availability, we used the numbers 
published by the German Federal Ministry for Economic Affairs and 
8 
Energy for the years 2010 to 2020 [56], and the values from AGEB for 
the years 2021 to 2023 [57,58]. The relative difference is calculated as 
the ratio of (𝐷𝑒𝑚𝑎𝑛𝑑𝑚𝑜𝑑𝑒𝑙−𝐷𝑒𝑚𝑎𝑛𝑑𝑟𝑒𝑓 )∕𝐷𝑒𝑚𝑎𝑛𝑑𝑟𝑒𝑓  and shown in Fig.  5. 
Positive values indicate the model overestimates and negative values 
that the model underestimates compared to the reference figures.

Since the years before 2015 are initialization years in the model, we 
focused on the years from 2015 to 2023. During these years, the model 
overestimated the final energy demand of residential buildings by 10% 
on average and underestimated that of non-residential buildings by 3% 
on average. The final energy demand for appliances and water heating 
is calibrated top-down, so it remains within a 10% deviation. However, 
the space heating demand is estimated using the vintage stock model, 
and showed an average deviation of 14% for residential buildings and 
−11% for non-residential buildings. When looking at the breakdown 
by energy carrier, most deviations for individual energy carriers are 
within 20%. Fig.  6 shows the significance of energy demand by end-
use and energy carrier in 2020 for both residential and non-residential 
sectors, respectively. The deviations are also presented as percentages, 
supplementing the time series perspective in Fig.  5.

Within space heating, electricity exhibited the highest average devi-
ation in both residential and non-residential sectors (Fig.  6). This could 
be caused by the approximated assumption on the contribution factor 
of electricity when it is the secondary heating system. In reality, this 
is highly dependent on the system configuration. However, given the 
fact that electricity only accounts for 1 to 5% of final space heating 
demand and main heating technologies such as heat pumps are not 
affected by electricity as an auxiliary energy carrier, the observed 
deviation is not expected to influence the robustness of the final energy 
demand projections from the model. Nevertheless, this assumption 
could be revisited and backed up by more evidence in the future. In 
contrast, although other energy carriers remained within ±15% for 
the residential sector, natural gas and district heating were notable 
outliers in the non-residential sector. The input data for heating systems 
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Fig. 5. Relative difference of final energy demand by end use (top) and energy carrier (bottom) from 2010 to 2023.
Fig. 6. Final energy demand and relative differences for the residential (RES) and non-residential (NRES) sectors in 2020.
were derived from hectare-level statistics for residential buildings, but 
such detailed data were not available for non-residential buildings. As 
a result, the infrastructure availability for the non-residential sector 
was based on that of the residential sector, which helps to explain 
the larger deviations observed for natural gas and district heating in 
non-residential buildings. Nevertheless, it is important to note that the 
relative deviation of each energy carrier share in the model from that 
in the reference in each sector is within 25%. Here, ‘‘energy carrier 
share’’ denotes the energy carrier’s proportion of the respective final 
energy demand (model or reference).
9 
Finally, the energy balances of federal states were taken from the 
official reports of each state and put together for validation at the 
federal level. Fig.  7 the relative differences for each state in 2020. 
City states such as Berlin, characterized by high population density, 
are systematically underestimated, with deviations ranging from −19% 
to −25%. In contrast, states with low population density, such as 
Brandenburg and Mecklenburg-Western Pomerania, are systematically 
overestimated, showing deviations between 5% and 30%. The average 
floor area of a dwelling is given as input to the model at the national 
level, differentiated by building type and construction period. Simi-
larly, the average total floor area for non-residential building types, 
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Fig. 7. Relative differences between modeled energy demand and reference energy consumption by federal state.
along with the allocation of building types to sub-sectors in the non-
residential sector, are also inputs at the national level. However, these 
averages vary between federal states, influenced by factors such as 
population density and the predominance of specific activity types in 
the non-residential sector. The total floor area of the generated building 
stock in the model is validated only at the national level and found to 
deviate from the reference figures by approximately −1%. Moreover, it 
is important to note the uncertainty associated with the references used 
for validation. The total of the final energy demands reported by federal 
states does not match the total national demand reported by the federal 
ministry. This discrepancy between the two statistical sources varies, 
with individual energy carriers exhibiting a difference of approximately 
±20%.

4.1.3. Summary
RENDER-Building is a bottom-up building stock model that uses 

spatially detailed statistical data as input where available. Given the 
inherent uncertainties regarding the statistics used for validation and 
the real availability of the technical options modeled, the model is pre-
cise enough to understand the dynamics of energy demand in buildings 
at the national level. It is particularly suitable for the analysis in this 
study, as this aims to illuminate different transformation pathways for a 
nation. There is potential to improve the calibration in the distribution 
of the residential stock in terms of efficiency level, estimation of space 
heating demand, contribution of electricity to space heating as an 
10 
auxiliary energy carrier, and the heating system stock of non-residential 
buildings. Moreover, the regional deviations stem from assumptions 
made at the national level. By focusing on improving and integrating 
more detailed input data at regional level, the model could also provide 
robust results at this geographical level.

4.2. Scenarios

As described in Section 1, we analyzed the long-term evolution 
of the building sector in Germany under three scenarios developed 
in the RokiG2050 project. The narratives of the three scenarios are 
described below and the qualitative scenario factors are summarized 
in five categories in Table  4.

1. The sustainable transformation scenario (STS) outlines an opti-
mistic vision of the German building sector in 2030, in which 
comprehensive measures have been taken to make the building 
stock more sustainable. This concerns implementing technolo-
gies and regulations as well as economic and social aspects. This 
scenario fully exploits the potential for increasing the efficiency 
of buildings and this positive development continues until 2045.

2. The challenged transformation scenario (CTS) is characterized by 
some challenges and limited progress. This scenario is a hybrid 
variant of the two extreme scenarios and assumes a medium 
development pathway for most of the scenario aspects. Due 
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Table 4
Description of scenarios according to categories.
 Categories STS CTS LTS  
 Category 1:
Energy-efficient building 
refurbishment as a core 
component of the energy 
transition

∙ Serial renovation is widely adopted from 
2030. 
∙ Low-temperature district heating is widely 
used. 
∙ Digitalization of timetables for the entire 
building. 
∙ Buildings as prosumers.

∙ Serial renovation is widely adopted from 
2045. 
∙ Low-temperature district heating is partly 
used. 
∙ Digitalization of timetables for specific 
components. 
∙ Buildings prefer HPs.

∙ Serial renovation only starts to take 
shape in 2045. 
∙ Low-temperature district heating is not 
used. 
∙ No digitalization of timetables. 
∙ Buildings prefer fossils.

 

 Category 2: Integration of 
the individual building 
into the overall system

∙ DSM technologies adopted by most large 
electricity consumers. 
∙ Smart meters are widely adopted.

∙ No flexibility from buildings, only from 
large central storage facilities. 
∙ Smart meters are partially adopted in new 
buildings.

∙ No flexibility. 
∙ Smart meters are not adopted even in 
new buildings.

 

 Category 3: New 
construction as a driver of 
innovation

∙ High efficiency increase in technological 
progress. 
∙ Climate-neutral operation is obligatory for 
new buildings and partly implemented in 
existing buildings. 
∙ Solar obligation for all new buildings 
(80% of roof area).

∙ Medium efficiency increase in 
technological progress. 
∙ Climate-neutral operation is obligatory for 
new buildings. 
∙ Solar obligation for all new buildings 
(60% of roof area).

∙ Low efficiency increase in 
technological progress. 
∙ Climate-neutral operation is not 
mandatory. 
∙ Solar obligation not enforced.

 

 Category 4: Regulatory 
framework

∙ Well-distributed funding for the promotion 
of climate-neutral construction and heat 
generators. 
∙ Minimum 80% RE in every newly 
installed heating system. 
∙ KfW EH 100 requirements.

∙ Funding is not well distributed and lacks 
long-term orientation. 
∙ Minimum 65% RE in every newly 
installed heating system. 
∙ KfW EH 75 requirements.

∙ Funding is limited and only for 
specific objectives. 
∙ No tightening of the current RE 
requirements. 
∙ No requirements for building 
efficiency.

 

 Category 5: Society and 
Economy

∙ Sufficient supply of skilled workers. 
∙ Supply chain well managed. 
∙ Inequality reduced and subsidies granted 
to the right target groups. 
∙ The idea of communal living becomes 
popular.

∙ Supply of skilled workers does not achieve 
target level. 
∙ Supply chain partly managed. 
∙ Inequality has not decreased. 
∙ The number of old households increases, 
while the other households remain stable.

∙ Clear shortage of skilled workers. 
∙ Supply chain not well managed. 
∙ Inequality is clearly greater. 
∙ Single-person households increase, 
resulting in higher demand for living 
space.

 

to the challenges to implementing technologies or regulations, 
the potential for increasing the efficiency of buildings is only 
partially exploited in this scenario.

3. The limited transformation scenario (LTS) is almost a continuation 
of the status quo and outlines a pessimistic vision of the German 
building stock with only limited or no improvement in building 
efficiency until 2030. This scenario considers difficulties due to 
the shortage of skilled workers and disruptions in the global sup-
ply chain. In addition, technological potentials remain untapped 
due to low investment readiness in the sector.

As shown, the three scenarios range from optimistic to pessimistic: 
two envision extreme developments – one positive (STS) and one 
negative (LTS) – and the third (CTS) represents a middle-of-the-road ap-
proach between the other two. As a result, twelve scenario factors were 
selected and quantified using different parameters in the RENDER-
Building model as shown in Table  5. Then, we investigated the sec-
toral decarbonization potential in the defined scenarios and identified 
the critical bottlenecks to achieving climate neutrality. We analyzed 
the system costs and costs for individual end-users comparatively in 
alternative pathways.

5. Results and discussion of the case study

Fig.  8 presents the modeled pathways of final energy demand and 
direct CO2 emissions (excluding indirect emissions from electricity and 
DH) for Germany’s building sector from 2020 to 2050, disaggregated by 
end uses across three policy scenarios (STS, CTS, LTS). Fig.  9 provides 
more detailed results for space and water heating by energy carrier, 
modeled using a vintage stock approach. As shown, by 2045, the total 
final energy demand in the three scenarios is 540 TWh, 580 TWh, and 
640 TWh, respectively. The final energy demand for space and water 
heating drops to around 220 TWh in STS, The CTS and LTS scenarios 
both have a substantial demand for fossil fuels of approximately 150 
TWh and 230 TWh, respectively. Although absolute electricity demand 
11 
decreases across all scenarios, its relative importance grows signifi-
cantly, with its share in total final energy demand reaching 53% in 
STS, 50% in CTS, and 43% in LTS.

Regarding CO2 emissions, despite being the most ambitious path-
way, the STS scenario falls short of meeting the 2030 KSG target (67 
MtCO2) by 13 MtCO2. The emissions in this scenario include approxi-
mately 60 MtCO2 from space heating, 10 MtCO2 from water heating, 
and 10 MtCO2 from appliances, as shown in Fig.  8. This progress 
is driven by aggressive policy measures, including a 65% minimum 
renewable energy requirement for new heating systems implemented 
from 2025, and substantial subsidies of up to 60% for renewable heat-
ing technologies. Despite these improvements, the 2030 KSG target is 
not met due to strong inertia in the modernization of the building stock. 
Moreover, the decarbonization of non-heating end-uses, especially in 
non-residential buildings, has to take place simultaneously. More am-
bitious policy instruments are needed to substantially increase the rate 
of heating system replacement and building refurbishment. However, 
when looking further into the future, the STS scenario demonstrates 
strong long-term potential, achieving 95% CO2 emission reduction 
by 2045 and approaching climate neutrality. Thus, the assumed pace 
of decarbonization in the STS scenario could be a guideline for the 
transition to a climate-neutral building sector in Germany in the long 
term.

Compared with STS, the CTS scenario faces more significant chal-
lenges in meeting climate targets and misses the 2030 KSG target by 30 
MtCO2. By 2045, there are still 40 MtCO2 direct emissions, suggesting 
that delayed implementation of the renewable energy requirements 
(starting in 2035) and reduced subsidy allocations for renovation and 
modernization could cause even the long-term emission targets to be 
missed. To explore potential improvements to this scenario, we added 
an enhanced scenario CTS*, which incorporates a gradual transition 
to 100% biogas by 2045. However, even this variation still misses the 
2030 KSG target. By 2045, it comes closer than CTS to eliminating the 
emissions, but there are still 25 MtCO  of direct emissions remaining.
2
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Table 5
Overview of scenario factors, corresponding categories and quantitative assumptions.
 Category Scenario factor STS CTS LTS Model parameter  
 1 Serial renovation cost 10% lower 5% higher 20% higher Total costs in relation to conventional 

renovation after 2030
 

 1 Efficiency gains High (40) Medium (25) Low (15) Efficiency improvements (%) in 
appliances by 2050 (on average 
compared to 2020)

 

 2 Own consumption of solar 
PV

50 30 15 Self-consumption rate (%) of electricity 
from solar PV

 

 3, 4 Solar PV adoption in new 
buildings

Mandatory after 
2025

Mandatory after 
2025

No obligation Installation requirements of solar PV  

 4 Emission Trading System II 
(ETS II)

230 175 115 CO2 price by 2050 (EUR/tCO2)  

 4 Minimum requirements for 
building renovation from 
2025

Only low U-value Low to medium 
U-value

Low to 
medium-high 
U-value

Market availability of insulation 
measures according to their thermal 
transmittance (U-value)

 

 4 Solar PV adoption in 
existing buildings

80 50 20 Penetration rate (%) of PV by 2050  

 4 Regulatory restrictions on 
new heating system 
installations

65% (2025) 65% (2035) 65% (2045) Minimum renewable energy percentage 
requirement for the heating system (year 
of effect)

 

 4, 5 District heating 
infrastructure expansion

30% expansion 20% expansion 10% expansion District heating infrastructure 
availability (by 2045)

 

 4, 5 Subsidy for building 
renovation

Up to 75% Up to 50% Up to 30% Share of subsidies in initial investment 
expenditure on renovation measures

 

 4, 5 Subsidy for heating system 
modernization

Up to 60% Up to 45% Up to 30% Share of subsidies in initial investment 
expenditure on renewable heating 
technologies

 

 5 Household size 25% decrease Stays the same 12% increase Share of single-person households in 
2050 compared to 2020

 

Fig. 8. Final energy demand and CO2 emissions by end use in the three scenarios.
An in-depth analysis of the CTS scenario results reveals important 
insights into the transformation of the building sector, especially if the 
currently targeted progress faces the realistic challenges assumed. In 
terms of renovation activities, the scenario achieves approximately 1.45 
million renovations annually, with steady growth of roughly 12,000 
activities per year. These efforts result in an average specific heat 
demand reduction of 25 kWh/m2 over two decades (Fig.  10). The 
heating system modernization progresses at a rate of 830,000 new 
installations annually, with renewable energy technologies becoming 
increasingly dominant. As a result, the share of fossil fuel heating 
12 
systems in the building stock decreases to approximately 20% by 2045 
(Fig.  11).

Focusing on the heating system stock reveals significant opportu-
nities and challenges in accelerating decarbonization. Fig.  12 shows 
the age distribution of heating technologies in 2040. Approximately 5 
million fossil fuel boilers will be older than 10 years by then, and 3 
million of these are gas boilers. Fossil fuel boilers have low upfront 
investment costs and, when modernizing the heating system, agents 
tend to choose a new system based on the initial expenditure together 
with the fuel costs in recent years. Therefore, even though the prices 
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Fig. 9. Final energy demand and direct CO2 emissions from space and water heating by energy carrier in the three scenarios.

Fig. 10. Annual renovation activities and the average specific heating demand of the building stock (CTS).

Fig. 11. Annual change in heating technology stock and share of fossil boilers in stock (CTS).
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Fig. 12. Distribution of the heating technology stock by age in 2040 (CTS).
for fossil fuels are expected to be much higher in the future, the agents 
cannot base their decisions on this and may continue to invest in fossil 
fuel boilers until the system configuration does not meet the minimum 
requirements for the share of renewable energy. The aging of this boiler 
stock is a critical decision point, as these systems face substantially 
higher operating costs by 2045, primarily due to the projected doubling 
of fuel costs (between 2040 and 2045) driven by the transition to 
climate-neutral gas supplies and rising grid fees [59,60]. This implies 
that a comparative economic analysis between the continued operation 
of gas boilers with biogas (CTS*) and their early replacement would be 
crucial and highly relevant.

The estimated total investment required for early replacement of the 
remaining gas boilers ranges from €6 to 28 billion, contingent upon the 
availability of alternative renewable energy sources and infrastructure. 
While this represents a significant upfront cost, our analysis of the 
potential cost savings (𝐶𝑆)9 due to early replacement reveals com-
pelling economic benefits. The benefits are particularly pronounced for 
buildings with high specific heating demand (exceeding 150 kWh/m2), 
where the switch to heat pumps could generate the highest cost savings 
(see Fig.  13). Among the alternative technologies evaluated, both heat 
pumps and district heating demonstrate the most favorable economics 
for early replacement across a broad range of building types. These 
technologies could bring about cumulated cost savings of between €9 
and 17 billion. In contrast, biomass boilers show a limited cost-saving 
potential (€1 billion cumulated), suggesting they may be better suited 
for specific use cases rather than widespread adoption. This age-based 
analysis of the heating technology stock not only highlights the urgency 
of addressing aging fossil fuel systems but also provides valuable in-
sights into strategically targeting replacement for the greatest economic 
and environmental benefits. 

𝐶𝑆𝑛 =
2045
∑

𝑡=2040
𝐸𝐶𝑔,𝑡 −

2045
∑

𝑡=2040
𝐴𝐼𝐸𝑛,𝑡 + 𝐸𝐶𝑛,𝑡 (5)

Our findings underline the immense scale and complexity of the 
challenge ahead. The scenario analysis reveals a critical insight: even 

9 CS is calculated in Eq.  (5) as the difference in cumulated energy cost, 
𝐸𝐶, between continued operation of the gas boiler (g) until the end of 2045 
(with biogas as in CTS*) and its early replacement with renewable heating 
technology (n) including the annualized initial expenditure of investment, 
𝐴𝐼𝐸.
14 
under the optimistic scenario (STS), with aggressive policy support 
and widespread technological adoption, Germany’s building sector is 
projected to miss the 2030 emissions reduction target. While climate 
neutrality by 2045 appears achievable in this scenario, the short-term 
gap highlights the inertia of the existing stock and the time lags 
inherent in large-scale transitions. It is also worth noting that, for a 
developed country such as Germany, higher renovation rates could lead 
to less floor area constructed [2]. In our current model, however, ren-
ovations are endogenously triggered by building components reaching 
their end-of-life, which results in similar renovation rates across scenar-
ios. Policies that proactively trigger renovations could therefore further 
accelerate decarbonization. Furthermore, the challenged scenario (CTS) 
reveals that a less ambitious approach results in a substantial emissions 
gap, necessitating difficult and potentially costly interventions, such as 
operating millions of gas-based heating systems with biogas or their 
early replacement to get back on track.

The strategic implications for policymakers are clear. Achieving 
a climate-neutral building stock is not a matter of finding a single 
solution, but rather of orchestrating a portfolio of robust, sustained, 
and adaptive policies. Our results demonstrate that a combination of 
regulatory standards, substantial financial incentives, and coordinated 
infrastructure development is essential. In particular, the analysis of the 
CTS pathway and its variant goes beyond abstract targets to quantify 
the concrete economic trade-off between options that are still capable 
of achieving emission reduction targets when short-term ambition is 
lacking. This highlights the need for policies that not only encourage 
the fast adoption of renewable technologies but can also manage the 
economic and social consequences of retiring existing assets.

In summary, by using the agent-based RENDER-Building model, 
our research offers policymakers crucial guidance and orientation for 
designing effective and robust decarbonization strategies, by assessing 
full policy mixes, translating sector targets into concrete measures, 
informing system-level infrastructure and budgeting, comparing differ-
entiated subsidies (by building type, settlement, and decision-maker) 
to optimize resources, evaluating infrastructure rollout timing and 
sequencing, and testing targeted policies (e.g., technology mandates 
for specific vintages, income-based incentives). It also provides end 
users clear insights to help navigate the transition. The model and 
analysis can benefit from integrating more regionally detailed input 
data, as well as quantitative research on the real-life characteristics of 
renovation and technical systems, decision-making of building agents 
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Fig. 13. Potential cost savings due to early replacement of natural gas boiler by alternative RE technology for agents clustered by specific heating demand.
(e.g., estimating the 𝛽 discrete-choice parameter using empirical survey 
data), social influences on technology choice, and supply chain bottle-
necks of skilled labor and materials. Related aspects also include the 
feasibility of decentralized heat pumps, generation mix of individual 
district heating networks, and the transformation of individual gas 
distribution grids. A systematic consideration of these aspects would 
enable a more robust assessment of the transition pathways.

6. Conclusions

In this study, RENDER-Building, an agent-based building stock 
model with high spatial resolution, was developed and tested to explore 
the transformation of the German building sector. We analyzed three 
scenarios with detailed policy mixes and compared their decarboniza-
tion pathways with Germany’s targets. The findings reveal a critical 
gap: even in an optimistic scenario with aggressive policy support, the 
building sector is projected to miss its 2030 emissions reduction target, 
highlighting the significant inertia of the existing building stock and the 
time lags inherent in large-scale transitions. Furthermore, we highlight 
the potential costs and savings for buildings of realigning a challenged 
sectoral pathway to achieving climate neutrality. From a methodolog-
ical perspective, our research underscores the value of agent-based 
modeling approach for studying the energy system’s transformation. 
By representing the system from the bottom up, RENDER-Building 
captures granular dynamics that traditional approaches often miss: 
the heterogeneity of individual buildings, the bounded rationality of 
millions of decision-makers, and local infrastructure constraints. In 
particular, it enables flexible use of data at various granularities, 
offering a solution for approximations if detailed data are not available. 
The modular framework can be adapted to different regional contexts 
by adjusting input parameters (building stock characteristics, climate 
data, policy landscapes), with the acknowledgment that local validation 
and calibration are essential.
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Appendix

A.1. Sensitivity analysis of 𝛽

Fig.  A.1 presents the sensitivity analysis of the final energy demand 
for different energy carriers to the 𝛽 parameter, which governs agents’ 
responsiveness to cost differences when making technology and renova-
tion decisions. Higher 𝛽 values indicate more strongly cost-optimizing 
behavior. The analysis reveals that the overall energy demand path-
ways are quite robust to variations in 𝛽. As shown, the trajectories 
for major energy carriers like electricity, heating oil, and natural gas 
remain tightly clustered, even as 𝛽 varies from 1 to 3 (around the 
model’s baseline of 𝛽 = 2), suggesting that structural trends and price 
signals are dominant drivers.
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Fig. A.1. 𝛽 sensitivity of final energy demand by energy carrier.
Fig. A.2. Energy price sensitivity of final energy demand by energy carrier.
However, this aggregated stability masks more significant shifts 
within specific end-uses where technology competition is most direct. 
When isolating space and water heating, the impact of agent behavior 
becomes more pronounced as the effects of technology choices accu-
mulate over time. To quantify this, we can examine the coefficient of 
variation (standard deviation divided by the mean) across the five 𝛽
scenarios in 2050. This value is approximately 7% for electricity in 
space and water heating, whereas it is only 2% for natural gas. This 
indicates that, while the model is broadly stable, uncertainty in agent 
cost-sensitivity is a material factor in determining the pace of electrified 
heating, a key lever for decarbonization.

A.2. Sensitivity analysis of the energy price

Relative energy carrier prices are a key determinant of agents’ 
heating technology choices. To test the model’s sensitivity to these 
price signals, we created four additional scenarios based on the CTS, 
adjusting the electricity price trajectory upward and downward by 20% 
and 40%. As Fig.  A.2 shows, the model exhibits moderate sensitivity at 
the aggregated level of total final energy demand, particularly for the 
16 
high-volume carriers of electricity, fuel oil, and natural gas, shown in 
the second row.

Similar to the sensitivity of 𝛽, when isolating the final energy de-
mand for space and water heating, the cumulative effects of technology 
choices become much more apparent. By 2050, the coefficient of vari-
ation across the five price scenarios for electricity demand in heating 
reaches 14.3%, while it is 7.3% for natural gas. The comparatively 
lower sensitivity for natural gas is largely explained by the policy 
constraint in the CTS scenario, which prohibits the installation of new 
gas boilers after 2035, limiting their long-term market. Consequently, 
the primary substitution effect of fluctuating electricity prices (which 
directly influence heat pump economics) occurs between heat pumps 
and renewable heating options. This is reflected in the high coefficients 
of variation for biomass solid (14.3%) and biogas (11.6%) demand by 
2050.
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Data will be made available on request.
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