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ARTICLE INFO ABSTRACT

Keywords: Technological advancements and behavior shifts are reshaping households’ energy consumption patterns,
Household energy consumption necessitating advanced models to quantify their behavior, energy system operation, and interactions in the
Behavior modeling energy communities. While various models address these aspects individually, there is a lack of a unified

Time-use survey

Prosumaging

Smart energy management system
Energy community

framework that covers them holistically. This paper presents FLEX, a modeling framework consisting three
interconnected components that are designed to feed the output of one into the next. First is FLEX-Behavior,
which simulates hourly household energy demands using a Markov core. Second is FLEX-Operation, which
models hourly operation of household energy systems across three modes: simulation, perfect-forecasting
optimization, and rolling-horizon optimization. Its results are validated with detailed physics-based building
simulation software. Third is FLEX-Community, which models the peer-to-peer electricity trading among
community members and battery operation of the aggregator. Finally, demonstration results are provided
to show the capabilities of FLEX in potential applications for supporting policy design. In summary, FLEX
advances existing approaches by bridging detailed household-level behavior and energy system modeling with
community-scale optimization, addressing the trade-off between computational tractability and household-
level accuracy in the modeling of aggregator-operated energy communities. However, limitations also lie in
the requirement of high-quality micro-level data for robust estimation and validation. Future research could
investigate system-level dynamics between energy communities and power systems, including participation in
ancillary services markets and the evolving regulatory frameworks governing community operations.

1. Introduction at home or integrated into electric vehicles (EVs), and (2) thermal
storage, including the building’s thermal mass or water tanks. This

Combining heat pumps (HP), photovoltaic (PV) systems, energy is especially effective when HPs are smartly controlled in response
storage, and smart energy management systems (SEMS) can signifi- to dynamic electricity pricing. Beyond these technologies, household
cantly contribute to a carbon-neutral household sector in three key behaviors also play a crucial role in the energy transition. For example,
ways. First, heat supply can be decarbonized through the use of elec- (1) teleworking influences building occupancy and heating/cooling

demand, (2) EV driving behavior affects its interactions with other
technologies, and (3) the emergence of “energy communities” where
end-users trade electricity among themselves or through an aggregator,
adds new dimensions to energy management.

tricity. Second, PV systems introduce more distributed renewable gen-
eration at the household level. Third, energy storage and SEMS enable
households to provide flexibility to the power system. Energy stor-
age can take the form of (1) electric battery storage, either installed
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To better understand the integration of the technologies and the be-
havioral aspects, existing modeling approaches can be broadly catego-
rized into three key strands. First is household behavior modeling, which
captures households’ behavior, including occupant status (e.g., absence,
presence, number of occupants, etc.), energy behaviors, and behavioral
efficiency [1]. Specifically, many studies focus on the impact of oc-
cupants’ behavior on the electric load profiles. With more micro-data
available, studies have switched from top-down approaches [2,3] to
bottom-up simulation. In this context, based on the time-use survey
(TUS) data in Sweden, Ref. [4] developed a model for the behav-
iors of individual occupants following the Markov chain approach,
i.e., occupants switching from one activity to another according to the
probabilities in a Markov matrix. In addition, the electricity demand
profiles are derived from the activity patterns. In Ref. [5], an open-
source high-resolution model was developed for UK following a similar
approach, which has recently been implemented in Python by a team
in Forschungszentrum Jiilich.! synPRO [6] is another example for
Germany, which generates the energy demand profiles for households,
covering the electric devices, domestic hot water, and space heating.
Ref. [7] improved the approach by (1) considering activities’ time-
dependent “duration” probabilities, and (2) covering the profiles of
driving. Ref. [8] presented a comprehensive review of the available TUS
datasets, modeling methods, and implementations in building energy
research. Finally, for the remote areas where no TUS data is available,
RAMP [9] is an open-source software for the stochastic simulation of
user-driven energy demand time series. However, the synthetic profiles
are generated based on pre-defined appliances and their operation
strategy instead of TUS data and activity modeling.

Second is household energy system modeling, which focuses on the
operation of a household’s energy system and the final energy consump-
tion. One key part of these types of models is to calculate the heating
and cooling demand of the building, by two physics-based modeling
approaches:

« First are sophisticated software applications which calculate the
space heating and cooling demand of individual buildings in de-
tail, e.g., TRNSYS,? EnergyPlus,® IDA ICE,* etc. These models are
more precise, but the main drawback is the high computational
effort and the high requirement for building information.
Second are simplified models where a building is modeled as
resistances and capacities (i.e., “RC models”). These models are
not as detailed as the first category but are still suitable to
calculate energy demand at the hourly resolution while needing
less computational resources [10], which makes it possible to
integrate them into an optimization algorithm. By comparing the
5R1C approach (DIN ISO 13790°) with TRNSYS and EnergyPlus,
Refs. [11,12] showed that the 5R1C approach can balance the
details of building modeling and the computation demand of
optimization.

Using the RC approach, Ref. [13] combined heating and cooling
demand with other end-uses (incl. hot water, electric appliances, and
electric vehicles) and focused on optimizing the hourly operation of
building technologies to minimize the total energy cost in a year. The
building technologies also include PV and electric battery. Apart from
Ref. [13], there are also studies focusing on different optimization
objectives, for example, maximizing the self-consumption rate of a PV
system [14] or minimizing the peak demand [15]. Based on these

2 https://www.trnsys.com

3 https://energyplus.net

4 https://www.equa.se/en/ida-ice

5 DIN ISO 13790 has been replaced by ISO 52016, which is more detailed
and models each building element separately. However, from the modeling
perspective, it also demands more detailed building data and leads to higher
computational effort, especially in operation optimization.
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models, the following questions can be analyzed: (1) the operation
strategy of the energy storage; (2) the optimal sizes of PV and battery
for a building; (3) the potential of load shifting; and (4) the impact of
variable electricity prices on household energy system operation with
SEMS. Ref. [16] summarized the recent modeling studies and their cov-
erage of the major components. Furthermore, the optimization includes
two types: perfect-forecasting optimization over the whole year [17]
and rolling-horizon optimization with a moving time window [18].

Third is energy community modeling. Along with households changing
from consumers to prosumers/prosumagers, energy communities are
also expected to play a significant role in the energy transition, since
individual households are too small to join the electricity markets.
Reasons for participating in a community are decreasing energy costs
and addressing climate change, as well as the community spirit [19]. An
energy community can be controlled by its members based on a general
agreement or by an “aggregator”. The aggregator (1) shifts loads in the
community to internally reduce the imbalance costs in real-time; and
(2) controls a group of storages and loads in the day-ahead market and
in the balancing market to minimize the imbalance costs [20]. The lat-
est European framework assigns the aggregators a fundamental role in
the energy market liberalization and distributed energy resources inte-
gration towards carbon-neutral energy systems [21]. Ref. [22] reviewed
the business models an aggregator can implement by trading the flex-
ibility obtained from community participants in different electricity
markets. For modeling the energy community, Ref. [23] simulates the
impact of the design options of the energy communities on their overall
economic and environmental performance. Different demand patterns
and technological characteristics are assigned to the participants, and it
was revealed that the results depend greatly on the types of participants
and their technology configurations. On the other hand, Ref. [24]
optimizes the strategy of an aggregator to minimize imbalances in
the energy community, in which the members’ demand profiles are
simplified and classified as non-flexible, semi-flexible, and flexible.
This dichotomy reflects a fundamental methodological challenge: de-
tailed representation of individual households’ demand patterns and
technology characteristics often proves computationally intractable for
aggregator-level optimization, necessitating simplifications that may
compromise household-level accuracy. Refs. [25,26] provide a compre-
hensive review of the work on the modeling of energy communities,
reflecting the key-determinants of energy communities from a research
point of view.

Drawing upon these studies modeling household behavior, house-
hold energy system, and energy communities, this paper aims to ad-
vance the field through two main contributions. First, we develop
an integrated open-source Python framework called FLEX, which con-
sists of three interconnected models: FLEX-Behavior, FLEX-Operation,
and FLEX-Community. Building upon methodologies from Refs. [7,
13], FLEX-Behavior generates detailed household behavior profiles that
serve as input for FLEX-Operation, which can either simulate household
energy system operation or optimize it to minimize annual costs using
perfect-forecasting or rolling-horizon approaches. These outputs are
then fed into FLEX-Community, which models household interactions
within energy communities. This cascading design ensures that de-
tailed assumptions are consistently maintained throughout the model-
ing chain. Second, FLEX-Community offers a complementary approach
to existing energy-community models by leveraging its integration with
FLEX-Behavior and FLEX-Operation. This integration allows detailed
household characteristics and technology configurations, defined at
the behavior and operation modeling stages, to be carried through
to the community level analysis. In doing so, we try to address the
methodological challenge of maintaining household-level details and
heterogeneity in the optimization modeling of aggregator-operated
energy communities.

The rest of this paper is organized as follows. Section 2 introduces
the three models in FLEX in detail, followed by the demonstration re-
sults in Section 3. In Section 4, we discuss the strengths and limitations
of FLEX. Finally, we conclude in Section 5, including its existing and
potential applications in supporting policy design.
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2. Model

In this section, we introduce the three components in the FLEX
framework, which capture the household behavior, energy system op-
eration, and interactions in an energy community in hourly resolution.

« First is FLEX-Behavior (Section 2.1), which models the energy-
related behavior of a specified household. For each individual
household member, the activity profile is modeled at a 10 min
resolution based on a Markov chain model. Then, the activity
profile is converted to the profiles of appliance electricity and hot
water demand, as well as building occupancy based on assigned
locations of the activities. Finally, household members’ profiles
are aggregated to the household level in hourly resolution.
Second is FLEX-Operation (Section 2.2), which focuses on the
operation of the household’s energy system. Taking the results
from FLEX-Behavior, FLEX-Operation is further configured with the
household’s building envelope and technology system, including
the heating system, PV, thermal and electric battery storage,
and EV. The model calculates the system operation in hourly
resolution, as well as the energy consumption and cost. It can run
in three modes: simulation, perfect-forecasting optimization, and
rolling-horizon optimization.

Third is FLEX-Community (Section 2.3), which takes a group of
households’ results from FLEX-Operation as input and models the
operation of an energy community from an aggregator’s perspec-
tive. The aggregator can make a profit by using two options:
(1) Facilitate the peer-to-peer (P2P) electricity trading among the
households in real-time, and (2) Optimize the operation of the
batteries of its own or of community members to buy at lower
prices and sell at higher ones.

2.1. FLEX-Behavior

FLEX-Behavior models the energy demand and building occupancy
profiles of a specified household in hourly resolution. To achieve
this, the model begins by modeling the activity profiles of individual
household members, based on the time-use survey® data from Germany.

The diaries from the survey respondents consist of 165 coded dis-
tinct activities in 10 min intervals. In addition, participants also filled
out a questionnaire regarding the social-demographic information. To
reduce model complexity, the 165 TUS activities are reclassified into
17 categories as listed in Table 1. We try to minimize the number
of categories for better estimation quality and also try to group the
activities using a similar set of appliances. So, on one hand, there is
the very specific category 8 “ironing and maintaining clothes” which
can trigger the use of an electric iron and sewing machine; and there
is also the general category 11 “working” which relates to a bunch
of appliances including computer, laptop, etc. Finally, some activity
categories are classified because they imply the specific location of the
person, e.g., “other activities at home”, “commuting to work or study”,
etc.

Furthermore, based on the social-demographic data in TUS, we
defined four person types, including

1. fully-employed adults (age between 20 to 65);
2. partly-employed adults (age between 20 to 65);
3. students (younger than 20);

® Every decade, the Federal Statistical Office in Germany conducts a large-
scale, representative survey to record the time-use of its citizens. Due to the
availability of micro-level data, this study uses the survey conducted from
August 2012 to July 2013, covering over 12000 individuals from 5040 house-
holds, across various social demographics and household sizes. They were
asked to keep detailed records of their daily activities for three pre-determined
days (two weekdays, and one weekend day).
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4. retired persons (older than 65).

For each person type, the data is filtered and used to estimate a
time-dependent Markov model which simulates the person’s switching
between different activities in 10 min resolution in two types of days,
weekday (from Monday to Friday) and weekend (Saturday and Sun-
day), through a whole year (52560 time steps). The generation follows
the three steps below:

« First, at midnight 0:00, a starting activity is selected according to
the TUS data to initialize the simulation. For example, for a fully-
employed adult, we calculated the probabilities of all possible
activities at 0:00 on a weekday, and the probability of “sleeping”
is 86.52%.

Second, for this selected initial activity, its duration is drawn from
an estimated distribution. Following Ref. [7], the frequency of
all possible durations of each activity in the dataset are counted,
given the combination of (1) person type, (2) day type, and (3)
time. Then, the counted frequency is further used to develop the
duration distribution of each activity, i.e., the duration distribu-
tion of each activity depends on its starting time. This is important
to reflect that, for example, the activity “sleeping” lasts longer if
it starts at 0:00 than around noon.

Third, by the end of the initial activity, the next activity is selected
according to a Markov matrix as described by Eq. (1). P denotes
the matrix where each element at index (i, j) represents the prob-
ability switching from activity i to j, which is also estimated to be
time-dependent (¢ > 2). As shown in Table 1, there are 17 states
(activities) in total, i.e., n = 17. Besides, we chose the first-order
Markov chain here as suggested by similar studies [4-7]. In this
way, we prioritize the estimation of time-dependency of switching
probabilities given the limited amount of empirical data.

pii(®  pp(® P1a(®)
p= p21()  pyp(®) P2, (1)
pnl(t) an(I) pnn(t) (1)

n
where Zp,-_j =1,forany 1 <i<n
J=1

Fourth, after switching to the new activity, the model will draw
its duration from a distribution as introduced in Step 2, again
depending on (1) person type, (2) day type, and (3) time.

By repeating Steps 3—-4, the model generates the activity profile until
the end of the day. Then, the model starts again from Step 1 for the
next day. The whole process continues until the activity profile of the
whole year is generated for the person. Fig. 1 shows an example of the
activity pattern of a fully-employed adult on weekdays, comparing the
TUS data (left) and model results (right). To quantitatively measure
the difference between TUS data and model results, for each of the
144 time slots in Fig. 1, we calculated the Jensen—Shannon Divergence
(JSD) between the two “activity percentage vectors”, resulting a range
[0.033, 0.174] with the mean value equal to 0.087.

Taking the generated activity profile as an intermediate result,
FLEX-Behavior converts it to the demand profiles of appliance electric-
ity and hot water, as well as the location profile of the person. Each
activity is related to a location and a group of appliances with pre-
defined trigger probabilities (see Table 1). The appliances are selected
to cover the most common household devices and their probabilities
are developed based on the ownership rate,” then calibrated so that (1)
the electricity demand profiles are reasonably close to the profiles from
empirical studies [27] with peaks in the evening and around noon, and
(2) the annual electricity demand is close to the Destatis data [28] (see

7 Source: www.statista.com.
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Table 1
Reclassified activity categories.
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D Activity Category Location Related Appliances (trigger probability)
1 Sleeping Home No appliance (1.00).
2 Eating and drinking Home/Outside No appliance (1.00).
3 Hygiene and dressing Home No appliance (0.20), Hot water (0.27), toothbrush (0.09), shaver (0.09), hair dryer
(0.27), and hair iron (0.09).
4 Meal preparation Home No appliance (0.10), stove(0.27), oven (0.15), microwave (0.22), pressure cooker
(0.03), sandwich maker(0.03), toaster (0.05), blender mixer (0.03), water kettle
(0.05), and coffee machine (0.06).
5 Dish washing Home No appliance (0.20), dishwasher (0.32) and hot water (0.48).
6 Cleaning home Home No appliance (0.20), hot water (0.24) and vacuum cleaner (0.56).
7 Doing laundry Home Washing machine (1.00).
8 Ironing and maintaining clothes Home Electric iron (0.80) and sewing machine (0.20).
9 Entertainment Home/Outside Computer (0.21), laptop (0.12), tablet (0.09), mobile phone (0.16), television (0.16),
projector (0.06), game console (0.15), and speaker amplifier (0.01).
10 Other activities at home Home No appliance (1.00).
11 Working Home/Outside No appliance (0.10), computer (0.41), laptop (0.24), tablet (0.06), mobile phone
(0.11), and printer (0.08).
12 Education Home/Outside No appliance (0.10), computer (0.24), laptop (0.41), tablet (0.06), mobile phone
(0.11), and printer (0.08).
13 Other activities outside of home Outside No appliance (1.00).
14 Other journey Outside No appliance (1.00).
15 Commuting to work or study Outside No appliance (1.00).
16 Maintenance work at home Home Lawnmower (0.46) and electric tools (0.54).
17 Taking a break at work or school Outside Mobile phone (0.42), microwave (0.11), sandwich maker (0.08), toaster (0.08),
water kettle (0.14), and coffee machine (0.17).
= Sleeping Doing laundry Other activities outside of home and sports
mEm Eating and drinking Ironing and maintaining clothes = Other journey
m= Hygiene and dressing Entertainment mm Commuting to work or study
Meal preparation Other activities at home == Maintenance work at home
-_—

Dish-washing
Cleaning home

Working
Education

Taking a break during work or school

0.8

14
o

activity percentage
°
=

0.0

80
timeslots

60 80
timeslots

Fig. 1. Activity pattern of a fully-employed adult on weekdays: German TUS data (left) and model results (right).

Section 3). Finally, we combine the assumption of “teleworking” with
the generated profiles. If a person is doing “teleworking” on a specific
day, the activities “working” and “taking a break at work or school”
will be counted as “at home”, as well as energy consumption during
that time. Finally, FLEX-Behavior aggregates the members’ profiles to
the household level in hourly resolution.

2.2. FLEX-Operation

FLEX-Operation models the hourly operation of a household’s en-
ergy system covering the final energy demand for five services: (1)
electric appliances (e.g., lighting, television, refrigerator, etc.), (2) do-
mestic hot water, (3) space heating, (4) space cooling, and (5) vehi-
cle. As shown in Fig. 2, the “Behavior” module takes the results of
FLEX-Behavior as input, including the demand profiles of appliance
electricity and domestic hot water, as well as the hourly target indoor
temperature range developed based on the occupancy profile, with
minimum and maximum set temperature assumed for the building
being occupied or not. Optionally, FLEX-Operation can also include
vehicles by taking the driving profile as input. The vehicle can be either
electric or with a combustion engine. When it is an electric vehicle, its

charging profile can be optimized with other technologies with SEMS
installation.

2.2.1. Heating and cooling demand modeling

Given the target indoor temperature range and the environment
temperature, the building’s heating and cooling demand are modeled
with the 5R1C approach following DIN ISO 13790. The circuit model
is presented in Fig. 3, together with a group of selected equations. The
related parameters are summarized in Table 2. A detailed description
of the methodology can be found in DIN ISO 13790.

As shown in Fig. 3, the relation between indoor temperature (6,;,),
environment temperature (6,), and heating&cooling demand (¢ y ¢ ,4)
is presented by Equation (a), with ¢ representing the heat flows (unit:
W) and 6 representing the temperatures (unit: °C). 6,,, means the air
temperature from the ventilation system. In our study, we assume there
is no heat exchanger installed in the ventilation system, so we have
0, = 0,. ¢;,, means internal gains and we have ¢;, = 0.5¢;,,. The node
temperature ¢’ is calculated with Equation (b), in which ¢!, represents
the average temperature of the building mass in the previous (6'!)
and current (6! ) hour, as calculated by the Equation (c). Specifically,
6!, is calculated by Equation (d), with ¢! denoting the net heat

m_tot
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Behavior (8760h)
appliance electricity demand profile
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Building (5R1C Model, DIN ISO 13790)

effective mass of walls

hot water demand profile

whole surface mass of walls

driving profile
target indoor temperature range

Energy price (8760h)
electricity and feed-in price
fuels, incl. natural gas, heating oil, etc.
district heating

windows
ventilation and thermal conductance

Space Heating and Domestic Hot Water
boiler, incl. heat pump, fuel boiler, etc.
thermal storage (space heating and hot
water tanks)

Region weather (8760h)

outside temperature and radiation Calculation

optimization mode

simulation mode

Space Cooling
air-conditioner parameters

PV and Battery

Vehicle

PV and battery parameters

vehicle parameters (e.g., kWh/km, etc.)

Fig. 2. Structure of the FLEX-Operation model.

5R1C representation of the building

1 1
H, ;0 + H,.0, + ¢}, + Prcna

o = a
ar Htr,is + Hue ( )

t ' ' ¢ Yt cn
Hyy 0, + &, + Hy, 0, + Hyy [0, + T]

o tr,msYm tr,w
s Htr,ms + Htr,w + Htrl (b)
L@ e
ma =" 5 (©
. an" [C,,/3600 — 0.5(H,,3 + H,, )] + ¢in_,o,
m= C,u/3600 + 0.5(H 3 + Hypom) (d)
:n_tot = ¢:n + Htr3¢’:r + le,emeé + H!rSH!r,woé
H,3H,, ¢;ﬂ + d)’HC,nd ¢ (e)
L G )
H!rl Hue
o A 0.50" t
Pm =, O30 + Pi) )
A Htr,w
= (= = g YO58+ ) (&)

Fig. 3. Circuit model for the building and key equations from DIN ISO 13790.

gain (i.e., internal and solar gains minus loss), calculated in Equations
(e)-(g). q.';’m[ means the solar gain.

The key advantage of using this simplified 5R1C approach is that,
the building mass is considered as a thermal storage in the calcula-
tion, which can be further integrated into the operation optimization
including all technologies in the building. When SEMS is installed, the
heat pump can be smartly controlled to pre-heat the building when the
electricity price is lower. The heat can be stored in the building mass.

For validation, we compared the results of FLEX-Operation with
detailed physics-based building simulation software IDA ICE. Nine rep-
resentative buildings located in Salzburg (Austria) are selected for the
comparison, including five single family house (SFH) and four multiple-
family house (MFH) with different insulation status.® The comparison

8 The buildings SFH_1B, SFH_5B, MFH_1B, MFH_5B are with bad insulation.
The buildings SFH_1S, SFH_5S, MFH_1S, MFH_5S are with medium insulation.
The building SFH_9B is with good insulation

results are shown in Fig. 4, with the difference in percentage marked.
As shown, the FLEX-Operation model approximates the annual heating
demand for each building relatively well, which is in accordance with
results from Refs. [29,30]. The biggest difference comes from the
building SFH_9B with good insulation.

2.2.2. Heating and cooling system modeling

To satisfy the space heating (¢ ,,) and the exogenous hot water
demand, a heating system is included in FLEX-Operation, consisting
of (1) a main heater, which can be a heat pump, a fuel-based boiler
(natural gas, heating oil, coal, biomass, etc.), or a district heating
system; (2) an electric heating element as a backup for peak demand;
and (3) two buffer tanks for space heating and domestic hot water,
respectively.

When a heat pump is installed as the main heater, we consider its
hourly coefficient of performance (COP) depending on the temperatures
of the sink (G;I.nk) and source (9’ ), as calculated by Eq. (2).

src

sink sre

coP =nx6., /@, —0.) @
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Table 2

Building parameters in the 5R1C model.
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Parameter Explanation Unit Value or Equation
A, effectively used floor area m? building specific
A the ratio between the surface and effective area 1 A=45
A, the total surface of the building m? A = AA;
A the surface area of the building element j m? building specific
k; the specific thermal capacity of the building element j J/K m? building specific
C, the total thermal capacity of the building mass J/K C,=3,(k;xA))
A, effective mass-related area m? A,=Ca/%, (kf x A j)
H, ventilation transfer coefficient W/K building specific
H, surface transfer coefficient W/K H,,; =3454,,
H,, window transfer coefficient W/K building specific
H,, s surface transfer coefficient W/K H,, =914,
H,, heat transfer coefficient W/K H,, =1/(1/H, +1/H, ;)
H,, heat transfer coefficient W/K H,=H,+H,,
H,, heat transfer coefficient W/K H,, =1/(1/H,,+1/H,,,)
H), external environment heat transmission coefficient W/K building specific
H, ground heat transmission coefficient W/K building specific
Hy unconditioned room heat transmission coefficient W/K building specific
H, adjacent buildings heat transmission coefficient W/K building specific
H, transmission coefficient through opaque building elements W/K H,=H,+H,+Hy,+H,
Hyom effective thermal mass heat transmission coefficient W/K Hy e =1/(1/H,, +1/H,,,)

B FLEX-Operation DA ICE

160
15% 1% 4% -6% -38% 15% 5% 9% 3%

1404

1204

100+

80 1

60 -

40

Specific Space Heating Demand (kWh/m?)

20+

SFH_1B SFH_1S SFH_5B SFH_5S SFH_9B MFH_1B MFH_1S MFH_5B MFH_5S
Building

Fig. 4. Building heating demand comparison between FLEX-Operation and IDA ICE.

For an air-source heat pump, we assume ¢, = 6 and n = 0.35.
For a ground-source heat pump, we assume 6!, = 10 °C and # = 0.4.
The 5 values of the air- and ground-source heat pumps are chosen so
that the resulting COP is consistent with the data from the manufac-
turers [31-34]. The size of the heat pump is decided according to the
maximum demand when the environment temperature is —14 °C. In
case of temperature lower than —14 °C, a supplementary electric heater
is added, with COP = 1.

Regarding the two buffer tanks for space heating and hot water
demand, they are optional in the model. When installed, we assume
the temperature inside the tank is homogeneous and the surrounding
temperature is 20 °C. The thermodynamic properties of the water —
heat capacity (c,q,), mass (m,,,.), and pressure — are constant. The
heat loss coefficients of the tanks equal to 0.2 W/m’K. The minimum
temperature of the tanks equal to 28 °C, based on which a tank’s state-
of-charge (SOC) is calculated by Eq. (3). We assume the space heating
tank can be charged up to 45 °C and 65 °C for the domestic hot water
tank. The heat loss is calculated by Eq. (4), with A,,,, denoting the
surface area of the tank. The typical sizes of space heating and domestic

hot water tanks are 700L (A,,,, = 4.62 m?) and 300L (4, = 2.63 m?),
respectively.

ank,t = Myater X Cwater X (Ttank,t - 28) (3)

Qtank_lass,t =02x Atank X (Ttank,t - 20) (4)

Finally, for the space cooling demand, we consider an optional
air-conditioner, with constant coefficient of performance equal to 3.

2.2.3. PV and battery modeling

FLEX-Operation considers optional PV and battery adoption in the
households. The hourly PV generation is exogenous for the model,
downloaded from the PV-GIS database® for specific regions and years
given the size of the PV system. To generate the representative PV
generation profile for a country, we first download the profiles of
NUTS-3 regions in the country, then aggregate them to the national

9 https://re.jrc.ec.europa.eu/pvg_tools/en/
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Fig. 5. System boundary and energy flows in FLEX-Operation.

level by taking the weighted average. The weights are regional floor
areas provided by the HOTMAPS project.'® For the battery, we assume
the charging and discharging efficiency are both 95% with maximum
power 4.5 kW. The SOC of battery is modeled either following a rule-
based approach or optimized, according to the running mode of the
model (see Section 2.2.5).

2.2.4. Vehicle modeling

As shown in Fig. 2, FLEX-Operation also considers an optional
vehicle for the household. If included, the driving profile of the vehicle
is used as input. Following Ref. [35], driving profiles are developed
based on the MOP!! data for FLEX. A typical driving profile includes
two parts:

1. a binary location profile, with ones implying the vehicle is at
home and zeros indicating the vehicle is outside.

2. a driving distance profile in the unit of km, which is then
multiplied with the energy intensity of the vehicle to calculate
the final energy demand and cost;

When the vehicle is electric, the model can optimize its charging
with the other technologies’ operation. This can significantly affect the
household’s energy system operation: first, if a PV system is available,
the EV can be charged with the generation surplus to increase the self-
consumption rate of PV; second, under dynamic electricity prices, the
EV can be smartly charged from the grid when the electricity price is
lower with SEMS installation.

2.2.5. Running modes

In summary, Fig. 5 shows the system boundary and energy flows of
FLEX-Operation. For a household/building with all the above-
mentioned technologies configured, FLEX-Operation can calculate the
hourly operation of its energy system in three modes: (1) simulation,
(2) perfect-forecasting optimization, and (3) rolling-horizon optimiza-
tion.'?

First, in the simulation mode, the model follows a rule-based ap-
proach: (1) the PV generation is used to satisfy electricity consumption

10 www.hotmaps-project.eu

11 https://mobilitaetspanel.ifv.kit.edu/english/

12 Depending on the complexity of the building configurations and the
strength of the computer, our runs show that the reference mode takes no
longer than 1 s, but the two optimization modes can take 12-40 s.

directly; (2) the surplus of PV generation is saved following the order of
battery, electric vehicle, and domestic hot water tank; and (3) if there
is still PV generation left, it is sold to the grid.

Second, in the perfect-forecasting optimization mode, the model opti-
mizes the hourly operation of all installed technologies to minimize the
total energy cost through the whole year, assuming the electricity price
and weather are all known from the beginning. The objective function
is shown by Eq. (5), assuming heating and vehicle are both electric for
simplicity. EP, and FiT, represent the electricity price and PV feed-
in tariff, respectively. The total electricity consumption from the grid
(EC,,;4,) includes all internal loads from appliances (EC,,,,), heating
system (ECy,,), cooling system (EC,;,), electric vehicle (EC,, ), and
SOC change of battery (EC, ). Then, the consumption supported
by PV-generation (ES ,,,4,) is deducted (Eq. (6)). Besides, the PV-
generation (ES ) can be used to support internal loads, battery, EV,
and if still remains, the surplus will be sold to the grid (Eq. (7)).

min  Cost = Y0 W(EP, X ECyig, — FiT, X ES pyeria) 6)
Ecgrid,t = Ecapp,t + EChs,t + ECcs,t + Ecev,t + Ecbat,t - ESpUZload,t

(6)

ESpU,t = ESvaIoad.t + ESvabat,r + ESvaev,t + ESvagrid,t (7)

In the optimization, the building can be pre-heated to minimize
the total energy cost, which can be reflected by the hourly heating
demand profile. So, we conducted the comparison between FLEX-
Operation with IDA ICE again for two buildings shown in Fig. 4: (1)
SFH_9B where IDA ICE demand is higher, and (2) SFH_1B where FLEX-
Operation demand is higher. The hourly indoor temperature result
from FLEX-Operation is used as input for IDA ICE to parametrize
the “set temperature”, then compared with the indoor temperature
calculated by IDA ICE, as shown in Fig. 6 (left). As IDA ICE is not
an optimization model — the “set temperature” works as a direction
instead of constraint — the orange profile follows the blue one closely
but not exactly. Besides, Fig. 6 (right) shows the hourly heating demand
in FLEX-Operation and IDA ICE for the two buildings, in which FLEX-
Operation is shown to underestimate the heating demand (heat loss)
for SFH_9B with higher efficiency and overestimate for SFH_1B with
lower efficiency. Finally, the less efficient SFH_1B has less number of
peaks than SFH_9B because it has higher losses after being pre-heated
in the optimization, so it is not as frequently pre-heated as the more
efficient SFH_9B by the optimization. This also indicates that buildings
with higher efficiency have higher flexibility for heat load shifting.
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Fig. 6. Comparison between FLEX-Operation and IDA ICE: indoor temperature (left) and heating demand (right).

To quantitatively measure the difference between the hourly results
IDA ICE and FLEX-Operation, the Jensen—Shannon Divergence (JSD)
are calculated again for the four timeseries shown in Fig. 6: first, for
SFH_9B, the JSD for indoor temperature and heating demand are 0.004
and 0.291; second, for SFH_1B, the JSD for indoor temperature and
heating demand are 0.001 and 0.047.

Third, in the rolling-horizon optimization mode, the model optimizes
the hourly operation of technologies to minimize the total energy cost,
but in rolling time windows recursively instead of through the whole
year. The other settings are same as the perfect-forecasting optimization
mode. As shown in Fig. 7, the time window for Day N starts at
12:00 and the optimization horizon is 36 h, based on the forecasts of
electricity price, environment temperature, and radiation. Then, only
the results in the first 24 h are kept and the optimization starts again
at 12:00 on Day N + 1.

We designed it in this way because the electricity price forecasts
are updated at 12:00 every day and weather forecasts within 36 h are
also more reliable. Besides, according to the literature, having a longer
optimization horizon improves the effectiveness of the optimization.
However, since the horizon of 36 h is too small to adequately take
the inertia of the building mass into account, we also considered the
impact of “terminal value”, which refers to the monetary value of the
heat stored in the building mass by the end of each time window. In
the literature, this is also referred to as “cost to go” [36] or “terminal
cost” [37] of a storage. As far as we are aware, there is no study
applying rolling-horizon optimization to single buildings with terminal
value considered yet. We try to cover this by taking the average
shadow price of the heat stored in the building mass in the previous
24 h as an estimate. Fig. 7 shows the dual variables of the terminal
value in rolling-horizon optimization and the average shadow price in
perfect-forecasting optimization.

Finally, Fig. 8 shows the annual energy cost of the nine represen-
tative buildings by running the three modes. To focus on the impact
of building mass and its terminal value, we removed the PV, battery,
and water tanks. As a result, the cost saving impact of SEMS on such

buildings are limited, ranging from 0.39% to 0.71% for the rolling-
horizon mode and 0.83% to 1.5% for the perfect-forecasting mode.
Additionally, we found that considering the “terminal value” in the
rolling-horizon mode can be important, as it contributes 23.67% to
75.00% of the cost saving in this mode. One thing to note is that, these
costs are calculated with the electricity price in Austria in 2019. An
increase of the price volatility will also increase the cost-saving in the
two optimization modes.

2.3. FLEX-Community

FLEX-Community models an energy community consisting of house-
holds with heterogeneous behaviors, building envelopes, and technol-
ogy adoptions. Receiving the results of individual households calcu-
lated in the first two models, FLEX-Community provides a complemen-
tary approach to existing literature, which maintains household-level
details and heterogeneity in the optimization modeling of aggregator-
operated energy communities. Taking the perspective of an aggregator
of the community, FLEX-Community maximizes its profit by (1) facili-
tating the P2P electricity trading within the community in real-time,
and (2) optimizing the operation of a battery. These two options
support the aggregator’s business model.

First, due to the heterogeneity among households, in some hours,
some households with PV sell their surplus generation to the grid
at the lower feed-in tariff (FIT;), while some other households buy
electricity from the grid at a higher price (P,). In such hours, we
assume the aggregator can facilitate P2P trading by buying electricity
from the households with surplus generation and selling it to the other
households. Specifically, we assume the aggregator buys electricity
at price P" = ¢Y{FIT,, which is no lower than the feed-in tariff
(6%? > 1), so these households are incentivized to sell the surplus to
the aggregator instead of the grid. Then, we assume that the aggregator
will at the same time sell the surplus to the other households at price
Pk = gaskp,, which is cheaper than buying from the grid (6% < 1).
As a result, the aggregator can make a profit in the hours when P,‘”"
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is higher than P9, the profit z?? is calculated by Eq. (8). In FLEX-
Community, the two parameters — 8% and 6% — are defined to reflect
the strategy of the community aggregator or the regulations that the
aggregator faces.

8760
”PZP = Z(PtaSk _ })ybid)Qt (8)

Secénld, in addition to facilitating P2P trading in real-time, the
aggregator can also buy electricity at a lower price and sell it when the
price is higher. For this, the aggregator can invest in a centralized elec-
tric battery or use the batteries of the households. Taking the results of
heterogeneous households calculated in the FLEX-Operation, the FLEX-
Community model receives the remaining capacity of each household
in each hour. These resources are pooled in the community and their
operation is optimized by the aggregator for profit (z°”"). The larger
the total (centralized + decentralized) battery capacity, the higher
%" the aggregator can earn. In return, this profit is split between

the aggregator and the households according to the energy-political
framework agreed by both sides.

3. Results

To demonstrate the capabilities of the FLEX modeling suite, we
defined five representative households (HH 1-5) from Germany com-
posed of different members, based on the four person types supported
in FLEX-Behavior, as listed in Table 3. Taking the household compo-
sition as input, FLEX-Behavior calculates the activity profile for each
household member, then converts the activity profiles to their energy
demand profiles of appliance electricity and hot water, as well as their
building occupancy profiles. Then, these profiles are aggregated to the
household level for each of HH 1-5, as shown in Fig. 9. The annual
results are summarized in Table 4.
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Table 3
Representative households.

D

Fully-employed Adult Partly-employed Adult Student Retired Person

HH1
HH2
HH3
HH4
HHS5

o = NN =
o = O O O
o N OO
N O O OO

Table 4
Annual energy demand and building occupancy.

D Appliance Electricity [kWh] Hot Water [kWh] Occupancy [h]
HH1 1499 1220 5347
HH2 2331 2444 6638
HH3 2724 3357 7622
HH4 3834 4879 8300
HH5 3823 3504 8291

As shown, except for HH5, the appliance electricity demand in-
creases with the number of household members, but the marginal incre-
ment declines, implying shared use of some appliances, e.g., lighting,
refrigerator, etc. Besides, the HH5 has a different shape of appliance
electricity demand (i.e., peaking around noon), due to the use of cook-
ing and housework appliances. Finally, the annual occupancy hours of
the households range between 5347 to 8291, implying a higher energy-
saving potential of SEMS for younger and smaller households, because
the heating and cooling can be turned off when they are outside during
the day.

Taking the profiles of HH3 calculated with FLEX-Behavior, we apply
the FLEX-Operation model to calculate the household’s energy system
operation. We assume the household lives in a moderately efficient
building heated by an air-source heat pump and cooled by an air-
conditioner. There are also installations of PV and battery. Besides,
we assume that the maximum and minimum temperatures for the
household are 27 °C and 20 °C regardless of whether the building is
occupied or not. Finally, we consider hourly dynamic electricity prices
between 0.21 and 0.42 Euro/kWh and constant PV feed-in price at
0.07 Euro/kWh. The hourly environment temperature for Germany
is developed following the same approach with PV generation (see
Section 2.2.3) based on the PV-GIS data.

Fig. 10 shows the electricity balance of the household in summer
(top) and winter (bottom) weeks. The impact of SEMS is reflected by
running the model in the “(perfect-forecasting) optimization” mode,'*

13 For simplicity, we present only the results from the perfect-forecasting
optimization mode, as the difference between the two optimization modes are
limited and we do not focus on a detailed comparison of the two here.

10

taking the “simulation” results as a benchmark. The end-uses of elec-
tricity are represented by “positive” bars in different colors, while the
“negative” bars show how the electricity demand is supplied in each
hour, for example, by the grid, PV generation, or battery discharge.
Besides, the feed-in of PV to the grid is also represented by “negative”
bars in pink color.

As shown, in a summer week, most of the household’s electricity
demand can be satisfied by its PV-battery system, no matter if SEMS is
adopted. However, when the battery operation can be optimized by an
SEMS, its charging time will be postponed to around noon, as well as
the domestic hot water tank. The PV surplus in the morning will be sold
to the grid. The space cooling demand is also impacted by the building
mass being used as storage. In a winter week, the PV generation is
reduced. The household cannot sell PV surplus to the grid and the use of
battery is also limited. The battery is only used when SEMS is adopted:
the household can optimize by charging the space heating tank and the
battery when the electricity price is lower, so we observe higher peaks
around hours 25, 50, etc.

Finally, by varying the households’ behavior profiles and the com-
ponent assumptions, 640 heterogeneous households are constructed
among which 320 of them are with PV installations. We assume that
these households do not have SEMS installed by themselves but are
members of an energy community. Their energy system operation is
first calculated by the FLEX-Operation model with the simulation mode
and then fed into the FLEX-Community model.

Fig. 11 shows the electricity balance of the community as a whole
in summer and winter weeks. So, half of the households with installed
PV, the community can be a net electricity producer in some hours
while being a net consumer in the other hours in the summer. This
means the aggregator can make a profit by shifting the surplus genera-
tion. Besides, under dynamic electricity price, the aggregator can store
electricity when the price is lower and sell it when the price is higher.
Finally, due to the heterogeneity within the community, the aggregator
can also facilitate real-time P2P trading within the community. As a
result, Fig. 12 shows the strategy optimized for the aggregator: P2P
electricity trading amount and battery charge/discharge in each month
of the year.

4. Discussions

By integrating three models into a consistent framework, FLEX
provides the flexibility to analyze household energy consumption and
impact of various technologies at different scales. In FLEX-Behavior,
users can specify the composition of one household and analyze its
appliance electricity and hot water demand, as well as the build-
ing occupancy. Assumptions of teleworking can be applied. By using
FLEX-Operation, the counterfactual impact of different technology in-
stallations can be analyzed by comparing the results of different setups.
Finally, by taking results from the first two models, FLEX-Community
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significantly improves the level of details in the modeling of energy
communities. Users can construct an energy community from scratch,
by defining the household composition and behavior of each commu-
nity member, as well as their adoptions of HP, PV, battery and EV in
detail. However, despite its modeling flexibility, the FLEX suite also
faces several limitations.

« First, the current version of FLEX-Behavior is based on data from
the Germany time-use survey collected in 2012-2013, limiting
its applicability to other countries. The households behavior and
energy usage patterns could also have changed especially due
to the impact of COVID-19 (e.g., teleworking). The model re-
quires updates when the micro-level data from the latest time-use
survey become available. In addition, the profiles of electricity
and hot water demand, as well as building occupancy, should
be validated again with more detailed empirical data, preferably
from the typical households categorized by socio-demographic
properties. The seasonal variations in the behavior patterns of
households (e.g., different routines in summer and winter) should
also be included. Finally, the modeling of appliances use can be
improved, with trigger probabilities estimated from micro-level
data and more detailed usage behavior (e.g., minimum off time)
considered.

Second, FLEX-Behavior only models the profiles of appliance
electricity demand, hot water demand, and building occupancy.
These may be inconsistent with the driving profiles used in FLEX-
Operation. We acknowledge the approach in Ref. [7], where
the authors generate all four profiles together. Users may also
link that model with FLEX-Operation if necessary. Besides, for
households with multiple members sharing a single EV, the un-
certainty in EV driving behavior could be significant, which may
reduce the impact of these inconsistencies. Moreover, in Ref. [35],
we use driving profiles developed from MOP data, which has
a longer observation period, offering better insights into daily
driving patterns compared to MiD'* data used in Ref. [7].

Third, FLEX-Operation focuses only on the operational costs of
a household’s energy system. For users interested in determining
the optimal size of PV systems or batteries, the model requires
running simulations for various size combinations and then pro-
cessing the results manually. This involves adding the investment
costs separately to compare the overall system economics. Inte-
grating size optimization for PV and battery into FLEX-Operation
is on our research agenda for the next phase. Furthermore, the
heat distribution system in FLEX-Operation can be improved to
better represent the floor heating system, which can not only
lower the supply temperature and increase the efficiency of heat
pumps, but also increase the heat capacity of the building and
impact the optimization result.

Fourth, regarding the energy-political framework of energy com-
munities, FLEX-Community is designed from the perspective of
an aggregator who optimizes its strategies for facilitating peer-to-
peer trading and operating batteries. Two parameters (6%¢ and
6%5k) are used to represent the aggregator’s pricing strategy, which
also decides the profit allocation between community members.
However, this approach may not be applicable to energy com-
munities that operate without an aggregator. The model could be
enhanced to include mechanisms for decentralized energy com-
munities. In addition, the energy-political framework of energy
communities is an important and dynamic aspect, and the model
could be enhanced to represent a broader range of regulatory
scenarios and community structures.

14 https://www.infas.de/studien/mobilitaet-in-deutschland-mid/
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Overall, compared with existing studies, the main strength of FLEX
is its ability to bridge the gap between detailed household-level be-
havior and energy system modeling and community-scale optimization
through its integrated, cascading framework. In particular, it offers a
complementary approach to resolve the traditional trade-off between
computational tractability and household-level accuracy in the mod-
eling of aggregator-operated energy communities. On the other hand,
the primary limitations of FLEX also lie in its detailed modeling of
household behavior and technology systems, which demands high-
quality micro-level data for estimation and validation. In addition,
an important extension for FLEX as well as the broader field is to
investigate the system-level dynamics, specifically the interface be-
tween energy communities and power system operations. Critical areas
for investigation include the optimization of value streams through
participation in ancillary services markets and demand response pro-
grams. Moreover, the evolving regulatory framework governing energy
communities — encompassing aggregator roles, profit allocation mecha-
nisms, and market participation rules — constitutes a crucial domain for
further investigation, particularly given the dynamic nature of energy
policy landscapes.

5. Conclusions

Technological advances and changing behaviors are fundamentally
reshaping household energy consumption patterns, necessitating so-
phisticated models to quantify their impacts and inform effective policy
making. This paper presents FLEX, an integrated open-source Python
framework for modeling household behavior, energy system operation,
and community-level interactions. Through its three interconnected
components — FLEX-Behavior, FLEX-Operation, and FLEX-Community —
the framework enables comprehensive analysis from individual house-
hold consumption to community-scale dynamics. With comprehen-
sive validation and cases calculation, the framework’s capabilities are
demonstrated. The strengths and limitations of the framework are also
discussed.

Benefiting from its granular household-level modeling and inte-
grated framework, FLEX provides a robust analytical foundation for
evaluating energy policies and regulatory frameworks. The framework
has already demonstrated its versatility across multiple applications: as-
sessing smart charging impacts on electric vehicle ownership costs [35],
evaluating prosumaging effects on grid expansion costs in combination
with a distribution grid planning model [38], and analyzing system-
level implications of smart energy management [17], variable elec-
tricity pricing [39], and decentralized heat pumps as flexibility op-
tions [40]. Looking forward, FLEX can further contribute to understand-
ing how energy communities interface with the broader power system,
particularly regarding participation in ancillary services markets and
demand response programs.
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