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 A B S T R A C T

Technological advancements and behavior shifts are reshaping households’ energy consumption patterns, 
necessitating advanced models to quantify their behavior, energy system operation, and interactions in the 
energy communities. While various models address these aspects individually, there is a lack of a unified 
framework that covers them holistically. This paper presents FLEX, a modeling framework consisting three 
interconnected components that are designed to feed the output of one into the next. First is FLEX-Behavior, 
which simulates hourly household energy demands using a Markov core. Second is FLEX-Operation, which 
models hourly operation of household energy systems across three modes: simulation, perfect-forecasting 
optimization, and rolling-horizon optimization. Its results are validated with detailed physics-based building 
simulation software. Third is FLEX-Community, which models the peer-to-peer electricity trading among 
community members and battery operation of the aggregator. Finally, demonstration results are provided 
to show the capabilities of FLEX in potential applications for supporting policy design. In summary, FLEX 
advances existing approaches by bridging detailed household-level behavior and energy system modeling with 
community-scale optimization, addressing the trade-off between computational tractability and household-
level accuracy in the modeling of aggregator-operated energy communities. However, limitations also lie in 
the requirement of high-quality micro-level data for robust estimation and validation. Future research could 
investigate system-level dynamics between energy communities and power systems, including participation in 
ancillary services markets and the evolving regulatory frameworks governing community operations.
1. Introduction

Combining heat pumps (HP), photovoltaic (PV) systems, energy 
storage, and smart energy management systems (SEMS) can signifi-
cantly contribute to a carbon-neutral household sector in three key 
ways. First, heat supply can be decarbonized through the use of elec-
tricity. Second, PV systems introduce more distributed renewable gen-
eration at the household level. Third, energy storage and SEMS enable 
households to provide flexibility to the power system. Energy stor-
age can take the form of (1) electric battery storage, either installed 

I This paper is supported by the newTRENDs (No. 893311) and ECEMF (No. 101022622) projects funded by the European Union’s Horizon 2020 research and 
innovation program. The code of FLEX modeling framework is available at https://github.com/H2020-newTRENDs/FLEX.
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at home or integrated into electric vehicles (EVs), and (2) thermal 
storage, including the building’s thermal mass or water tanks. This 
is especially effective when HPs are smartly controlled in response 
to dynamic electricity pricing. Beyond these technologies, household 
behaviors also play a crucial role in the energy transition. For example, 
(1) teleworking influences building occupancy and heating/cooling 
demand, (2) EV driving behavior affects its interactions with other 
technologies, and (3) the emergence of ‘‘energy communities’’ where 
end-users trade electricity among themselves or through an aggregator, 
adds new dimensions to energy management.
https://doi.org/10.1016/j.energy.2025.136338
Received 18 January 2025; Received in revised form 9 April 2025; Accepted 25 Ap
vailable online 13 May 2025 
360-5442/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access a
ril 2025

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/energy
https://www.elsevier.com/locate/energy
https://orcid.org/0000-0001-6062-4382
https://orcid.org/0000-0002-5736-5620
https://orcid.org/0000-0002-9515-7451
https://orcid.org/0009-0005-9032-3325
https://orcid.org/0009-0005-8965-352X
https://orcid.org/0000-0001-6846-9102
https://orcid.org/0000-0003-3350-7134
https://github.com/H2020-newTRENDs/FLEX
mailto:songmin.yu@isi.fraunhofer.de
https://github.com/RWTH-EBC/richardsonpy
https://doi.org/10.1016/j.energy.2025.136338
https://doi.org/10.1016/j.energy.2025.136338
http://creativecommons.org/licenses/by/4.0/


S. Yu et al. Energy 328 (2025) 136338 
To better understand the integration of the technologies and the be-
havioral aspects, existing modeling approaches can be broadly catego-
rized into three key strands. First is household behavior modeling, which 
captures households’ behavior, including occupant status (e.g., absence, 
presence, number of occupants, etc.), energy behaviors, and behavioral 
efficiency [1]. Specifically, many studies focus on the impact of oc-
cupants’ behavior on the electric load profiles. With more micro-data 
available, studies have switched from top-down approaches [2,3] to 
bottom-up simulation. In this context, based on the time-use survey 
(TUS) data in Sweden, Ref. [4] developed a model for the behav-
iors of individual occupants following the Markov chain approach, 
i.e., occupants switching from one activity to another according to the 
probabilities in a Markov matrix. In addition, the electricity demand 
profiles are derived from the activity patterns. In Ref. [5], an open-
source high-resolution model was developed for UK following a similar 
approach, which has recently been implemented in Python by a team 
in Forschungszentrum Jülich.1 synPRO [6] is another example for 
Germany, which generates the energy demand profiles for households, 
covering the electric devices, domestic hot water, and space heating. 
Ref. [7] improved the approach by (1) considering activities’ time-
dependent ‘‘duration’’ probabilities, and (2) covering the profiles of 
driving. Ref. [8] presented a comprehensive review of the available TUS 
datasets, modeling methods, and implementations in building energy 
research. Finally, for the remote areas where no TUS data is available, 
RAMP [9] is an open-source software for the stochastic simulation of 
user-driven energy demand time series. However, the synthetic profiles 
are generated based on pre-defined appliances and their operation 
strategy instead of TUS data and activity modeling.

Second is household energy system modeling, which focuses on the 
operation of a household’s energy system and the final energy consump-
tion. One key part of these types of models is to calculate the heating 
and cooling demand of the building, by two physics-based modeling 
approaches:

• First are sophisticated software applications which calculate the 
space heating and cooling demand of individual buildings in de-
tail, e.g., TRNSYS,2 EnergyPlus,3 IDA ICE,4 etc. These models are 
more precise, but the main drawback is the high computational 
effort and the high requirement for building information.

• Second are simplified models where a building is modeled as 
resistances and capacities (i.e., ‘‘RC models’’). These models are 
not as detailed as the first category but are still suitable to 
calculate energy demand at the hourly resolution while needing 
less computational resources [10], which makes it possible to 
integrate them into an optimization algorithm. By comparing the 
5R1C approach (DIN ISO 137905) with TRNSYS and EnergyPlus, 
Refs. [11,12] showed that the 5R1C approach can balance the 
details of building modeling and the computation demand of 
optimization.

Using the RC approach, Ref. [13] combined heating and cooling 
demand with other end-uses (incl. hot water, electric appliances, and 
electric vehicles) and focused on optimizing the hourly operation of 
building technologies to minimize the total energy cost in a year. The 
building technologies also include PV and electric battery. Apart from 
Ref. [13], there are also studies focusing on different optimization 
objectives, for example, maximizing the self-consumption rate of a PV 
system [14] or minimizing the peak demand [15]. Based on these 

2 https://www.trnsys.com
3 https://energyplus.net
4 https://www.equa.se/en/ida-ice
5 DIN ISO 13790 has been replaced by ISO 52016, which is more detailed 

and models each building element separately. However, from the modeling 
perspective, it also demands more detailed building data and leads to higher 
computational effort, especially in operation optimization.
2 
models, the following questions can be analyzed: (1) the operation 
strategy of the energy storage; (2) the optimal sizes of PV and battery 
for a building; (3) the potential of load shifting; and (4) the impact of 
variable electricity prices on household energy system operation with 
SEMS. Ref. [16] summarized the recent modeling studies and their cov-
erage of the major components. Furthermore, the optimization includes 
two types: perfect-forecasting optimization over the whole year [17] 
and rolling-horizon optimization with a moving time window [18].

Third is energy community modeling. Along with households changing 
from consumers to prosumers/prosumagers, energy communities are 
also expected to play a significant role in the energy transition, since 
individual households are too small to join the electricity markets. 
Reasons for participating in a community are decreasing energy costs 
and addressing climate change, as well as the community spirit [19]. An 
energy community can be controlled by its members based on a general 
agreement or by an ‘‘aggregator’’. The aggregator (1) shifts loads in the 
community to internally reduce the imbalance costs in real-time; and 
(2) controls a group of storages and loads in the day-ahead market and 
in the balancing market to minimize the imbalance costs [20]. The lat-
est European framework assigns the aggregators a fundamental role in 
the energy market liberalization and distributed energy resources inte-
gration towards carbon-neutral energy systems [21]. Ref. [22] reviewed 
the business models an aggregator can implement by trading the flex-
ibility obtained from community participants in different electricity 
markets. For modeling the energy community, Ref. [23] simulates the 
impact of the design options of the energy communities on their overall 
economic and environmental performance. Different demand patterns 
and technological characteristics are assigned to the participants, and it 
was revealed that the results depend greatly on the types of participants 
and their technology configurations. On the other hand, Ref. [24] 
optimizes the strategy of an aggregator to minimize imbalances in 
the energy community, in which the members’ demand profiles are 
simplified and classified as non-flexible, semi-flexible, and flexible. 
This dichotomy reflects a fundamental methodological challenge: de-
tailed representation of individual households’ demand patterns and 
technology characteristics often proves computationally intractable for 
aggregator-level optimization, necessitating simplifications that may 
compromise household-level accuracy. Refs. [25,26] provide a compre-
hensive review of the work on the modeling of energy communities, 
reflecting the key-determinants of energy communities from a research 
point of view.

Drawing upon these studies modeling household behavior, house-
hold energy system, and energy communities, this paper aims to ad-
vance the field through two main contributions. First, we develop 
an integrated open-source Python framework called FLEX, which con-
sists of three interconnected models: FLEX-Behavior, FLEX-Operation, 
and FLEX-Community. Building upon methodologies from Refs. [7,
13], FLEX-Behavior generates detailed household behavior profiles that 
serve as input for FLEX-Operation, which can either simulate household 
energy system operation or optimize it to minimize annual costs using 
perfect-forecasting or rolling-horizon approaches. These outputs are 
then fed into FLEX-Community, which models household interactions 
within energy communities. This cascading design ensures that de-
tailed assumptions are consistently maintained throughout the model-
ing chain. Second, FLEX-Community offers a complementary approach 
to existing energy-community models by leveraging its integration with 
FLEX-Behavior and FLEX-Operation. This integration allows detailed 
household characteristics and technology configurations, defined at 
the behavior and operation modeling stages, to be carried through 
to the community level analysis. In doing so, we try to address the 
methodological challenge of maintaining household-level details and 
heterogeneity in the optimization modeling of aggregator-operated 
energy communities.

The rest of this paper is organized as follows. Section 2 introduces 
the three models in FLEX in detail, followed by the demonstration re-
sults in Section 3. In Section 4, we discuss the strengths and limitations 
of FLEX. Finally, we conclude in Section 5, including its existing and 
potential applications in supporting policy design.

https://www.trnsys.com
https://energyplus.net
https://www.equa.se/en/ida-ice
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2. Model

In this section, we introduce the three components in the FLEX 
framework, which capture the household behavior, energy system op-
eration, and interactions in an energy community in hourly resolution.

• First is FLEX-Behavior (Section 2.1), which models the energy-
related behavior of a specified household. For each individual 
household member, the activity profile is modeled at a 10 min 
resolution based on a Markov chain model. Then, the activity 
profile is converted to the profiles of appliance electricity and hot 
water demand, as well as building occupancy based on assigned 
locations of the activities. Finally, household members’ profiles 
are aggregated to the household level in hourly resolution.

• Second is FLEX-Operation (Section 2.2), which focuses on the 
operation of the household’s energy system. Taking the results 
from FLEX-Behavior, FLEX-Operation is further configured with the 
household’s building envelope and technology system, including 
the heating system, PV, thermal and electric battery storage, 
and EV. The model calculates the system operation in hourly 
resolution, as well as the energy consumption and cost. It can run 
in three modes: simulation, perfect-forecasting optimization, and 
rolling-horizon optimization.

• Third is FLEX-Community (Section 2.3), which takes a group of 
households’ results from FLEX-Operation as input and models the 
operation of an energy community from an aggregator’s perspec-
tive. The aggregator can make a profit by using two options: 
(1) Facilitate the peer-to-peer (P2P) electricity trading among the 
households in real-time, and (2) Optimize the operation of the 
batteries of its own or of community members to buy at lower 
prices and sell at higher ones.

2.1. FLEX-Behavior

FLEX-Behavior models the energy demand and building occupancy 
profiles of a specified household in hourly resolution. To achieve 
this, the model begins by modeling the activity profiles of individual 
household members, based on the time-use survey6 data from Germany.

The diaries from the survey respondents consist of 165 coded dis-
tinct activities in 10 min intervals. In addition, participants also filled 
out a questionnaire regarding the social-demographic information. To 
reduce model complexity, the 165 TUS activities are reclassified into 
17 categories as listed in Table  1. We try to minimize the number 
of categories for better estimation quality and also try to group the 
activities using a similar set of appliances. So, on one hand, there is 
the very specific category 8 ‘‘ironing and maintaining clothes’’ which 
can trigger the use of an electric iron and sewing machine; and there 
is also the general category 11 ‘‘working’’ which relates to a bunch 
of appliances including computer, laptop, etc. Finally, some activity 
categories are classified because they imply the specific location of the 
person, e.g., ‘‘other activities at home’’, ‘‘commuting to work or study’’, 
etc.

Furthermore, based on the social-demographic data in TUS, we 
defined four person types, including

1. fully-employed adults (age between 20 to 65);
2. partly-employed adults (age between 20 to 65);
3. students (younger than 20);

6 Every decade, the Federal Statistical Office in Germany conducts a large-
scale, representative survey to record the time-use of its citizens. Due to the 
availability of micro-level data, this study uses the survey conducted from 
August 2012 to July 2013, covering over 12000 individuals from 5040 house-
holds, across various social demographics and household sizes. They were 
asked to keep detailed records of their daily activities for three pre-determined 
days (two weekdays, and one weekend day).
3 
4. retired persons (older than 65).

For each person type, the data is filtered and used to estimate a 
time-dependent Markov model which simulates the person’s switching 
between different activities in 10 min resolution in two types of days, 
weekday (from Monday to Friday) and weekend (Saturday and Sun-
day), through a whole year (52560 time steps). The generation follows 
the three steps below:

• First, at midnight 0:00, a starting activity is selected according to 
the TUS data to initialize the simulation. For example, for a fully-
employed adult, we calculated the probabilities of all possible 
activities at 0:00 on a weekday, and the probability of ‘‘sleeping’’ 
is 86.52%.

• Second, for this selected initial activity, its duration is drawn from 
an estimated distribution. Following Ref. [7], the frequency of 
all possible durations of each activity in the dataset are counted, 
given the combination of (1) person type, (2) day type, and (3) 
time. Then, the counted frequency is further used to develop the 
duration distribution of each activity, i.e., the duration distribu-
tion of each activity depends on its starting time. This is important 
to reflect that, for example, the activity ‘‘sleeping’’ lasts longer if 
it starts at 0:00 than around noon.

• Third, by the end of the initial activity, the next activity is selected 
according to a Markov matrix as described by Eq.  (1). 𝑃  denotes 
the matrix where each element at index (𝑖, 𝑗) represents the prob-
ability switching from activity 𝑖 to 𝑗, which is also estimated to be 
time-dependent (𝑡 ≥ 2). As shown in Table  1, there are 17 states 
(activities) in total, i.e., 𝑛 = 17. Besides, we chose the first-order 
Markov chain here as suggested by similar studies [4–7]. In this 
way, we prioritize the estimation of time-dependency of switching 
probabilities given the limited amount of empirical data. 

𝑃 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑝11(𝑡) 𝑝12(𝑡) ⋯ 𝑝1𝑛(𝑡)
𝑝21(𝑡) 𝑝22(𝑡) ⋯ 𝑝2𝑛(𝑡)
⋮ ⋮ ⋱ ⋮

𝑝𝑛1(𝑡) 𝑝𝑛2(𝑡) ⋯ 𝑝𝑛𝑛(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

where 
𝑛
∑

𝑗=1
𝑝𝑖,𝑗 = 1, for any 1 ≤ 𝑖 ≤ 𝑛

(1)

• Fourth, after switching to the new activity, the model will draw 
its duration from a distribution as introduced in Step 2, again 
depending on (1) person type, (2) day type, and (3) time.

By repeating Steps 3–4, the model generates the activity profile until 
the end of the day. Then, the model starts again from Step 1 for the 
next day. The whole process continues until the activity profile of the 
whole year is generated for the person. Fig.  1 shows an example of the 
activity pattern of a fully-employed adult on weekdays, comparing the 
TUS data (left) and model results (right). To quantitatively measure 
the difference between TUS data and model results, for each of the 
144 time slots in Fig.  1, we calculated the Jensen–Shannon Divergence 
(JSD) between the two ‘‘activity percentage vectors’’, resulting a range 
[0.033, 0.174] with the mean value equal to 0.087.

Taking the generated activity profile as an intermediate result, 
FLEX-Behavior converts it to the demand profiles of appliance electric-
ity and hot water, as well as the location profile of the person. Each 
activity is related to a location and a group of appliances with pre-
defined trigger probabilities (see Table  1). The appliances are selected 
to cover the most common household devices and their probabilities 
are developed based on the ownership rate,7 then calibrated so that (1) 
the electricity demand profiles are reasonably close to the profiles from 
empirical studies [27] with peaks in the evening and around noon, and 
(2) the annual electricity demand is close to the Destatis data [28] (see 

7 Source: www.statista.com.

http://www.statista.com
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Table 1
Reclassified activity categories.
 ID Activity Category Location Related Appliances (trigger probability)  
 1 Sleeping Home No appliance (1.00).  
 2 Eating and drinking Home/Outside No appliance (1.00).  
 3 Hygiene and dressing Home No appliance (0.20), Hot water (0.27), toothbrush (0.09), shaver (0.09), hair dryer 

(0.27), and hair iron (0.09).
 

 4 Meal preparation Home No appliance (0.10), stove(0.27), oven (0.15), microwave (0.22), pressure cooker 
(0.03), sandwich maker(0.03), toaster (0.05), blender mixer (0.03), water kettle 
(0.05), and coffee machine (0.06).

 

 5 Dish washing Home No appliance (0.20), dishwasher (0.32) and hot water (0.48).  
 6 Cleaning home Home No appliance (0.20), hot water (0.24) and vacuum cleaner (0.56).  
 7 Doing laundry Home Washing machine (1.00).  
 8 Ironing and maintaining clothes Home Electric iron (0.80) and sewing machine (0.20).  
 9 Entertainment Home/Outside Computer (0.21), laptop (0.12), tablet (0.09), mobile phone (0.16), television (0.16), 

projector (0.06), game console (0.15), and speaker amplifier (0.01).
 

 10 Other activities at home Home No appliance (1.00).  
 11 Working Home/Outside No appliance (0.10), computer (0.41), laptop (0.24), tablet (0.06), mobile phone 

(0.11), and printer (0.08).
 

 12 Education Home/Outside No appliance (0.10), computer (0.24), laptop (0.41), tablet (0.06), mobile phone 
(0.11), and printer (0.08).

 

 13 Other activities outside of home Outside No appliance (1.00).  
 14 Other journey Outside No appliance (1.00).  
 15 Commuting to work or study Outside No appliance (1.00).  
 16 Maintenance work at home Home Lawnmower (0.46) and electric tools (0.54).  
 17 Taking a break at work or school Outside Mobile phone (0.42), microwave (0.11), sandwich maker (0.08), toaster (0.08), 

water kettle (0.14), and coffee machine (0.17).
 

Fig. 1. Activity pattern of a fully-employed adult on weekdays: German TUS data (left) and model results (right).
Section 3). Finally, we combine the assumption of ‘‘teleworking’’ with 
the generated profiles. If a person is doing ‘‘teleworking’’ on a specific 
day, the activities ‘‘working’’ and ‘‘taking a break at work or school’’ 
will be counted as ‘‘at home’’, as well as energy consumption during 
that time. Finally, FLEX-Behavior aggregates the members’ profiles to 
the household level in hourly resolution.

2.2. FLEX-Operation

FLEX-Operation models the hourly operation of a household’s en-
ergy system covering the final energy demand for five services: (1) 
electric appliances (e.g., lighting, television, refrigerator, etc.), (2) do-
mestic hot water, (3) space heating, (4) space cooling, and (5) vehi-
cle. As shown in Fig.  2, the ‘‘Behavior’’ module takes the results of 
FLEX-Behavior as input, including the demand profiles of appliance 
electricity and domestic hot water, as well as the hourly target indoor 
temperature range developed based on the occupancy profile, with 
minimum and maximum set temperature assumed for the building 
being occupied or not. Optionally, FLEX-Operation can also include 
vehicles by taking the driving profile as input. The vehicle can be either 
electric or with a combustion engine. When it is an electric vehicle, its 
4 
charging profile can be optimized with other technologies with SEMS 
installation.

2.2.1. Heating and cooling demand modeling
Given the target indoor temperature range and the environment 

temperature, the building’s heating and cooling demand are modeled 
with the 5R1C approach following DIN ISO 13790. The circuit model 
is presented in Fig.  3, together with a group of selected equations. The 
related parameters are summarized in Table  2. A detailed description 
of the methodology can be found in DIN ISO 13790.

As shown in Fig.  3, the relation between indoor temperature (𝜃𝑎𝑖𝑟), 
environment temperature (𝜃𝑒), and heating&cooling demand (𝜙𝐻𝐶,𝑛𝑑) 
is presented by Equation (a), with 𝜙 representing the heat flows (unit: 
W) and 𝜃 representing the temperatures (unit: ◦C). 𝜃𝑠𝑢𝑝 means the air 
temperature from the ventilation system. In our study, we assume there 
is no heat exchanger installed in the ventilation system, so we have 
𝜃𝑠𝑢𝑝 = 𝜃𝑒. 𝜙𝑖𝑛𝑡 means internal gains and we have 𝜙𝑖𝑎 = 0.5𝜙𝑖𝑛𝑡. The node 
temperature 𝜃𝑡𝑠 is calculated with Equation (b), in which 𝜃𝑡𝑚𝑎 represents 
the average temperature of the building mass in the previous (𝜃𝑡−1𝑚 ) 
and current (𝜃𝑡𝑚) hour, as calculated by the Equation (c). Specifically, 
𝜃𝑡  is calculated by Equation (d), with 𝜙𝑡  denoting the net heat 
𝑚 𝑚_𝑡𝑜𝑡
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Fig. 2. Structure of the FLEX-Operation model.
Fig. 3. Circuit model for the building and key equations from DIN ISO 13790.
gain (i.e., internal and solar gains minus loss), calculated in Equations 
(e)–(g). 𝜙𝑡

𝑠𝑜𝑙 means the solar gain.
The key advantage of using this simplified 5R1C approach is that, 

the building mass is considered as a thermal storage in the calcula-
tion, which can be further integrated into the operation optimization 
including all technologies in the building. When SEMS is installed, the 
heat pump can be smartly controlled to pre-heat the building when the 
electricity price is lower. The heat can be stored in the building mass.

For validation, we compared the results of FLEX-Operation with 
detailed physics-based building simulation software IDA ICE. Nine rep-
resentative buildings located in Salzburg (Austria) are selected for the 
comparison, including five single family house (SFH) and four multiple-
family house (MFH) with different insulation status.8 The comparison 

8 The buildings SFH_1B, SFH_5B, MFH_1B, MFH_5B are with bad insulation. 
The buildings SFH_1S, SFH_5S, MFH_1S, MFH_5S are with medium insulation. 
The building SFH_9B is with good insulation
5 
results are shown in Fig.  4, with the difference in percentage marked. 
As shown, the FLEX-Operation model approximates the annual heating 
demand for each building relatively well, which is in accordance with 
results from Refs. [29,30]. The biggest difference comes from the 
building SFH_9B with good insulation.

2.2.2. Heating and cooling system modeling
To satisfy the space heating (𝜙𝐻𝐶,𝑛𝑑) and the exogenous hot water 

demand, a heating system is included in FLEX-Operation, consisting 
of (1) a main heater, which can be a heat pump, a fuel-based boiler 
(natural gas, heating oil, coal, biomass, etc.), or a district heating 
system; (2) an electric heating element as a backup for peak demand; 
and (3) two buffer tanks for space heating and domestic hot water, 
respectively.

When a heat pump is installed as the main heater, we consider its 
hourly coefficient of performance (COP) depending on the temperatures 
of the sink (𝜃𝑡𝑠𝑖𝑛𝑘) and source (𝜃𝑡𝑠𝑟𝑐), as calculated by Eq.  (2). 

𝐶𝑂𝑃 𝑡 = 𝜂 × 𝜃𝑡 ∕(𝜃𝑡 − 𝜃𝑡 ) (2)
ℎ𝑝 𝑠𝑖𝑛𝑘 𝑠𝑖𝑛𝑘 𝑠𝑟𝑐
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Table 2
Building parameters in the 5R1C model.
 Parameter Explanation Unit Value or Equation  
 𝐴𝑓 effectively used floor area m2 building specific  
 𝜆 the ratio between the surface and effective area 1 𝜆 = 4.5  
 𝐴𝑡 the total surface of the building m2 𝐴𝑡 = 𝜆𝐴𝑓  
 𝐴𝑗 the surface area of the building element 𝑗 m2 building specific  
 𝑘𝑗 the specific thermal capacity of the building element 𝑗 J/K m2 building specific  
 𝐶𝑚 the total thermal capacity of the building mass J/K 𝐶𝑚 =

∑

𝑗
(

𝑘𝑗 × 𝐴𝑗
)  

 𝐴𝑚 effective mass-related area m2 𝐴𝑚 = 𝐶2
𝑚∕

∑

𝑗

(

𝑘2𝑗 × 𝐴𝑗

)

 
 𝐻𝑣𝑒 ventilation transfer coefficient W/K building specific  
 𝐻𝑡𝑟,𝑖𝑠 surface transfer coefficient W/K 𝐻𝑡𝑟,𝑖𝑠 = 3.45𝐴𝑡𝑜𝑡  
 𝐻𝑡𝑟,𝑤 window transfer coefficient W/K building specific  
 𝐻𝑡𝑟,𝑚𝑠 surface transfer coefficient W/K 𝐻𝑡𝑟,𝑖𝑠 = 9.1𝐴𝑚  
 𝐻𝑡𝑟1 heat transfer coefficient W/K 𝐻𝑡𝑟1 = 1∕(1∕𝐻𝑣𝑒 + 1∕𝐻𝑡𝑟,𝑖𝑠)  
 𝐻𝑡𝑟2 heat transfer coefficient W/K 𝐻𝑡𝑟2 = 𝐻𝑡𝑟1 +𝐻𝑡𝑟,𝑤  
 𝐻𝑡𝑟3 heat transfer coefficient W/K 𝐻𝑡𝑟3 = 1∕(1∕𝐻𝑡𝑟2 + 1∕𝐻𝑡𝑟,𝑚𝑠)  
 𝐻𝐷 external environment heat transmission coefficient W/K building specific  
 𝐻𝑔 ground heat transmission coefficient W/K building specific  
 𝐻𝑈 unconditioned room heat transmission coefficient W/K building specific  
 𝐻𝐴 adjacent buildings heat transmission coefficient W/K building specific  
 𝐻𝑜𝑝 transmission coefficient through opaque building elements W/K 𝐻𝑜𝑝 = 𝐻𝐷 +𝐻𝑔 +𝐻𝑈 +𝐻𝐴  
 𝐻𝑡𝑟,𝑒𝑚 effective thermal mass heat transmission coefficient W/K 𝐻𝑡𝑟,𝑒𝑚 = 1∕(1∕𝐻𝑜𝑝 + 1∕𝐻𝑡𝑟,𝑚𝑠) 
Fig. 4. Building heating demand comparison between FLEX-Operation and IDA ICE.
For an air-source heat pump, we assume 𝜃𝑡𝑠𝑟𝑐 = 𝜃𝑡𝑒 and 𝜂 = 0.35. 
For a ground-source heat pump, we assume 𝜃𝑡𝑠𝑟𝑐 = 10 ◦C and 𝜂 = 0.4. 
The 𝜂 values of the air- and ground-source heat pumps are chosen so 
that the resulting COP is consistent with the data from the manufac-
turers [31–34]. The size of the heat pump is decided according to the 
maximum demand when the environment temperature is −14 ◦C. In 
case of temperature lower than −14 ◦C, a supplementary electric heater 
is added, with 𝐶𝑂𝑃 = 1.

Regarding the two buffer tanks for space heating and hot water 
demand, they are optional in the model. When installed, we assume 
the temperature inside the tank is homogeneous and the surrounding 
temperature is 20 ◦C. The thermodynamic properties of the water – 
heat capacity (𝑐𝑤𝑎𝑡𝑒𝑟), mass (𝑚𝑤𝑎𝑡𝑒𝑟), and pressure – are constant. The 
heat loss coefficients of the tanks equal to 0.2 W∕m2K. The minimum 
temperature of the tanks equal to 28 ◦C, based on which a tank’s state-
of-charge (SOC) is calculated by Eq.  (3). We assume the space heating 
tank can be charged up to 45 ◦C and 65 ◦C for the domestic hot water 
tank. The heat loss is calculated by Eq.  (4), with 𝐴𝑡𝑎𝑛𝑘 denoting the 
surface area of the tank. The typical sizes of space heating and domestic 
6 
hot water tanks are 700L (𝐴𝑡𝑎𝑛𝑘 = 4.62 m2) and 300L (𝐴𝑡𝑎𝑛𝑘 = 2.63 m2), 
respectively.

𝑄𝑡𝑎𝑛𝑘,𝑡 = 𝑚𝑤𝑎𝑡𝑒𝑟 × 𝑐𝑤𝑎𝑡𝑒𝑟 × (𝑇𝑡𝑎𝑛𝑘,𝑡 − 28) (3)

𝑄𝑡𝑎𝑛𝑘_𝑙𝑜𝑠𝑠,𝑡 = 0.2 × 𝐴𝑡𝑎𝑛𝑘 × (𝑇𝑡𝑎𝑛𝑘,𝑡 − 20) (4)

Finally, for the space cooling demand, we consider an optional 
air-conditioner, with constant coefficient of performance equal to 3.

2.2.3. PV and battery modeling
FLEX-Operation considers optional PV and battery adoption in the 

households. The hourly PV generation is exogenous for the model, 
downloaded from the PV-GIS database9 for specific regions and years 
given the size of the PV system. To generate the representative PV 
generation profile for a country, we first download the profiles of 
NUTS-3 regions in the country, then aggregate them to the national 

9 https://re.jrc.ec.europa.eu/pvg_tools/en/

https://re.jrc.ec.europa.eu/pvg_tools/en/
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Fig. 5. System boundary and energy flows in FLEX-Operation.
level by taking the weighted average. The weights are regional floor 
areas provided by the HOTMAPS project.10 For the battery, we assume 
the charging and discharging efficiency are both 95% with maximum 
power 4.5 kW. The SOC of battery is modeled either following a rule-
based approach or optimized, according to the running mode of the 
model (see Section 2.2.5).

2.2.4. Vehicle modeling
As shown in Fig.  2, FLEX-Operation also considers an optional 

vehicle for the household. If included, the driving profile of the vehicle 
is used as input. Following Ref. [35], driving profiles are developed 
based on the MOP11 data for FLEX. A typical driving profile includes 
two parts:

1. a binary location profile, with ones implying the vehicle is at 
home and zeros indicating the vehicle is outside.

2. a driving distance profile in the unit of km, which is then 
multiplied with the energy intensity of the vehicle to calculate 
the final energy demand and cost;

When the vehicle is electric, the model can optimize its charging 
with the other technologies’ operation. This can significantly affect the 
household’s energy system operation: first, if a PV system is available, 
the EV can be charged with the generation surplus to increase the self-
consumption rate of PV; second, under dynamic electricity prices, the 
EV can be smartly charged from the grid when the electricity price is 
lower with SEMS installation.

2.2.5. Running modes
In summary, Fig.  5 shows the system boundary and energy flows of 

FLEX-Operation. For a household/building with all the above-
mentioned technologies configured, FLEX-Operation can calculate the 
hourly operation of its energy system in three modes: (1) simulation, 
(2) perfect-forecasting optimization, and (3) rolling-horizon optimiza-
tion.12

First, in the simulation mode, the model follows a rule-based ap-
proach: (1) the PV generation is used to satisfy electricity consumption 

10 www.hotmaps-project.eu
11 https://mobilitaetspanel.ifv.kit.edu/english/
12 Depending on the complexity of the building configurations and the 
strength of the computer, our runs show that the reference mode takes no 
longer than 1 s, but the two optimization modes can take 12–40 s.
7 
directly; (2) the surplus of PV generation is saved following the order of 
battery, electric vehicle, and domestic hot water tank; and (3) if there 
is still PV generation left, it is sold to the grid.

Second, in the perfect-forecasting optimization mode, the model opti-
mizes the hourly operation of all installed technologies to minimize the 
total energy cost through the whole year, assuming the electricity price 
and weather are all known from the beginning. The objective function 
is shown by Eq.  (5), assuming heating and vehicle are both electric for 
simplicity. 𝐸𝑃 𝑡 and 𝐹 𝑖𝑇 𝑡 represent the electricity price and PV feed-
in tariff, respectively. The total electricity consumption from the grid 
(𝐸𝐶𝑔𝑟𝑖𝑑,𝑡) includes all internal loads from appliances (𝐸𝐶𝑎𝑝𝑝,𝑡), heating 
system (𝐸𝐶ℎ𝑠,𝑡), cooling system (𝐸𝐶𝑐𝑠,𝑡), electric vehicle (𝐸𝐶𝑒𝑣,𝑡), and 
SOC change of battery (𝐸𝐶𝑏𝑎𝑡,𝑡). Then, the consumption supported 
by PV-generation (𝐸𝑆𝑝𝑣2𝑙𝑜𝑎𝑑,𝑡) is deducted (Eq. (6)). Besides, the PV-
generation (𝐸𝑆𝑝𝑣,𝑡) can be used to support internal loads, battery, EV, 
and if still remains, the surplus will be sold to the grid (Eq. (7)).
min 𝐶𝑜𝑠𝑡 =

∑8760
𝑡=1 (𝐸𝑃 𝑡 × 𝐸𝐶𝑔𝑟𝑖𝑑,𝑡 − 𝐹 𝑖𝑇 𝑡 × 𝐸𝑆𝑝𝑣2𝑔𝑟𝑖𝑑,𝑡) (5)

𝐸𝐶𝑔𝑟𝑖𝑑,𝑡 = 𝐸𝐶𝑎𝑝𝑝,𝑡 + 𝐸𝐶ℎ𝑠,𝑡 + 𝐸𝐶𝑐𝑠,𝑡 + 𝐸𝐶𝑒𝑣,𝑡 + 𝐸𝐶𝑏𝑎𝑡,𝑡 − 𝐸𝑆𝑝𝑣2𝑙𝑜𝑎𝑑,𝑡

(6)

𝐸𝑆𝑝𝑣,𝑡 = 𝐸𝑆𝑝𝑣2𝑙𝑜𝑎𝑑,𝑡 + 𝐸𝑆𝑝𝑣2𝑏𝑎𝑡,𝑡 + 𝐸𝑆𝑝𝑣2𝑒𝑣,𝑡 + 𝐸𝑆𝑝𝑣2𝑔𝑟𝑖𝑑,𝑡 (7)

In the optimization, the building can be pre-heated to minimize 
the total energy cost, which can be reflected by the hourly heating 
demand profile. So, we conducted the comparison between FLEX-
Operation with IDA ICE again for two buildings shown in Fig.  4: (1) 
SFH_9B where IDA ICE demand is higher, and (2) SFH_1B where FLEX-
Operation demand is higher. The hourly indoor temperature result 
from FLEX-Operation is used as input for IDA ICE to parametrize 
the ‘‘set temperature’’, then compared with the indoor temperature 
calculated by IDA ICE, as shown in Fig.  6 (left). As IDA ICE is not 
an optimization model – the ‘‘set temperature’’ works as a direction 
instead of constraint – the orange profile follows the blue one closely 
but not exactly. Besides, Fig.  6 (right) shows the hourly heating demand 
in FLEX-Operation and IDA ICE for the two buildings, in which FLEX-
Operation is shown to underestimate the heating demand (heat loss) 
for SFH_9B with higher efficiency and overestimate for SFH_1B with 
lower efficiency. Finally, the less efficient SFH_1B has less number of 
peaks than SFH_9B because it has higher losses after being pre-heated 
in the optimization, so it is not as frequently pre-heated as the more 
efficient SFH_9B by the optimization. This also indicates that buildings 
with higher efficiency have higher flexibility for heat load shifting. 

http://www.hotmaps-project.eu
https://mobilitaetspanel.ifv.kit.edu/english/
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Fig. 6. Comparison between FLEX-Operation and IDA ICE: indoor temperature (left) and heating demand (right).
To quantitatively measure the difference between the hourly results 
IDA ICE and FLEX-Operation, the Jensen–Shannon Divergence (JSD) 
are calculated again for the four timeseries shown in Fig.  6: first, for 
SFH_9B, the JSD for indoor temperature and heating demand are 0.004 
and 0.291; second, for SFH_1B, the JSD for indoor temperature and 
heating demand are 0.001 and 0.047.

Third, in the rolling-horizon optimization mode, the model optimizes 
the hourly operation of technologies to minimize the total energy cost, 
but in rolling time windows recursively instead of through the whole 
year. The other settings are same as the perfect-forecasting optimization 
mode. As shown in Fig.  7, the time window for Day 𝑁 starts at 
12:00 and the optimization horizon is 36 h, based on the forecasts of 
electricity price, environment temperature, and radiation. Then, only 
the results in the first 24 h are kept and the optimization starts again 
at 12:00 on Day 𝑁 + 1.

We designed it in this way because the electricity price forecasts 
are updated at 12:00 every day and weather forecasts within 36 h are 
also more reliable. Besides, according to the literature, having a longer 
optimization horizon improves the effectiveness of the optimization. 
However, since the horizon of 36 h is too small to adequately take 
the inertia of the building mass into account, we also considered the 
impact of ‘‘terminal value’’, which refers to the monetary value of the 
heat stored in the building mass by the end of each time window. In 
the literature, this is also referred to as ‘‘cost to go’’ [36] or ‘‘terminal 
cost’’ [37] of a storage. As far as we are aware, there is no study 
applying rolling-horizon optimization to single buildings with terminal 
value considered yet. We try to cover this by taking the average 
shadow price of the heat stored in the building mass in the previous 
24 h as an estimate. Fig.  7 shows the dual variables of the terminal 
value in rolling-horizon optimization and the average shadow price in 
perfect-forecasting optimization.

Finally, Fig.  8 shows the annual energy cost of the nine represen-
tative buildings by running the three modes. To focus on the impact 
of building mass and its terminal value, we removed the PV, battery, 
and water tanks. As a result, the cost saving impact of SEMS on such 
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buildings are limited, ranging from 0.39% to 0.71% for the rolling-
horizon mode and 0.83% to 1.5% for the perfect-forecasting mode. 
Additionally, we found that considering the ‘‘terminal value’’ in the 
rolling-horizon mode can be important, as it contributes 23.67% to 
75.00% of the cost saving in this mode. One thing to note is that, these 
costs are calculated with the electricity price in Austria in 2019. An 
increase of the price volatility will also increase the cost-saving in the 
two optimization modes.

2.3. FLEX-Community

FLEX-Community models an energy community consisting of house-
holds with heterogeneous behaviors, building envelopes, and technol-
ogy adoptions. Receiving the results of individual households calcu-
lated in the first two models, FLEX-Community provides a complemen-
tary approach to existing literature, which maintains household-level 
details and heterogeneity in the optimization modeling of aggregator-
operated energy communities. Taking the perspective of an aggregator 
of the community, FLEX-Community maximizes its profit by (1) facili-
tating the P2P electricity trading within the community in real-time, 
and (2) optimizing the operation of a battery. These two options 
support the aggregator’s business model.

First, due to the heterogeneity among households, in some hours, 
some households with PV sell their surplus generation to the grid 
at the lower feed-in tariff (𝐹𝐼𝑇𝑡), while some other households buy 
electricity from the grid at a higher price (𝑃𝑡). In such hours, we 
assume the aggregator can facilitate P2P trading by buying electricity 
from the households with surplus generation and selling it to the other 
households. Specifically, we assume the aggregator buys electricity 
at price 𝑃 𝑏𝑖𝑑

𝑡 = 𝜃𝑏𝑖𝑑𝐹𝐼𝑇𝑡, which is no lower than the feed-in tariff 
(𝜃𝑏𝑖𝑑 ≥ 1), so these households are incentivized to sell the surplus to 
the aggregator instead of the grid. Then, we assume that the aggregator 
will at the same time sell the surplus to the other households at price 
𝑃 𝑎𝑠𝑘
𝑡 = 𝜃𝑎𝑠𝑘𝑃𝑡, which is cheaper than buying from the grid (𝜃𝑎𝑠𝑘 ≤ 1). 
As a result, the aggregator can make a profit in the hours when 𝑃 𝑎𝑠𝑘
𝑡
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Fig. 7. Optimization timeframe of the rolling-horizon optimization mode in FLEX-Operation.
Fig. 8. Annual energy cost comparison between the three running modes.
is higher than 𝑃 𝑏𝑖𝑑
𝑡 , the profit 𝜋𝑝2𝑝 is calculated by Eq.  (8). In FLEX-

Community, the two parameters – 𝜃𝑏𝑖𝑑 and 𝜃𝑎𝑠𝑘 – are defined to reflect 
the strategy of the community aggregator or the regulations that the 
aggregator faces. 

𝜋𝑝2𝑝 =
8760
∑

𝑡=1
(𝑃 𝑎𝑠𝑘

𝑡 − 𝑃 𝑏𝑖𝑑
𝑡 )𝑄𝑡 (8)

Second, in addition to facilitating P2P trading in real-time, the 
aggregator can also buy electricity at a lower price and sell it when the 
price is higher. For this, the aggregator can invest in a centralized elec-
tric battery or use the batteries of the households. Taking the results of 
heterogeneous households calculated in the FLEX-Operation, the FLEX-
Community model receives the remaining capacity of each household 
in each hour. These resources are pooled in the community and their 
operation is optimized by the aggregator for profit (𝜋𝑜𝑝𝑡). The larger 
the total (centralized + decentralized) battery capacity, the higher 
𝜋𝑜𝑝𝑡 the aggregator can earn. In return, this profit is split between 
9 
the aggregator and the households according to the energy-political 
framework agreed by both sides.

3. Results

To demonstrate the capabilities of the FLEX modeling suite, we 
defined five representative households (HH 1–5) from Germany com-
posed of different members, based on the four person types supported 
in FLEX-Behavior, as listed in Table  3. Taking the household compo-
sition as input, FLEX-Behavior calculates the activity profile for each 
household member, then converts the activity profiles to their energy 
demand profiles of appliance electricity and hot water, as well as their 
building occupancy profiles. Then, these profiles are aggregated to the 
household level for each of HH 1–5, as shown in Fig.  9. The annual 
results are summarized in Table  4.
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Fig. 9. Average appliance electricity demand, hot water demand, and building occupancy profiles of HH 1–5.
Table 3
Representative households.
 ID Fully-employed Adult Partly-employed Adult Student Retired Person 
 HH1 1 0 0 0  
 HH2 2 0 0 0  
 HH3 2 0 1 0  
 HH4 1 1 2 0  
 HH5 0 0 0 2  

Table 4
Annual energy demand and building occupancy.
 ID Appliance Electricity [kWh] Hot Water [kWh] Occupancy [h] 
 HH1 1499 1220 5347  
 HH2 2331 2444 6638  
 HH3 2724 3357 7622  
 HH4 3834 4879 8300  
 HH5 3823 3504 8291  

As shown, except for HH5, the appliance electricity demand in-
creases with the number of household members, but the marginal incre-
ment declines, implying shared use of some appliances, e.g., lighting, 
refrigerator, etc. Besides, the HH5 has a different shape of appliance 
electricity demand (i.e., peaking around noon), due to the use of cook-
ing and housework appliances. Finally, the annual occupancy hours of 
the households range between 5347 to 8291, implying a higher energy-
saving potential of SEMS for younger and smaller households, because 
the heating and cooling can be turned off when they are outside during 
the day.

Taking the profiles of HH3 calculated with FLEX-Behavior, we apply 
the FLEX-Operation model to calculate the household’s energy system 
operation. We assume the household lives in a moderately efficient 
building heated by an air-source heat pump and cooled by an air-
conditioner. There are also installations of PV and battery. Besides, 
we assume that the maximum and minimum temperatures for the 
household are 27 ◦C and 20 ◦C regardless of whether the building is 
occupied or not. Finally, we consider hourly dynamic electricity prices 
between 0.21 and 0.42 Euro/kWh and constant PV feed-in price at 
0.07 Euro/kWh. The hourly environment temperature for Germany 
is developed following the same approach with PV generation (see 
Section 2.2.3) based on the PV-GIS data.

Fig.  10 shows the electricity balance of the household in summer 
(top) and winter (bottom) weeks. The impact of SEMS is reflected by 
running the model in the ‘‘(perfect-forecasting) optimization’’ mode,13 

13 For simplicity, we present only the results from the perfect-forecasting 
optimization mode, as the difference between the two optimization modes are 
limited and we do not focus on a detailed comparison of the two here.
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taking the ‘‘simulation’’ results as a benchmark. The end-uses of elec-
tricity are represented by ‘‘positive’’ bars in different colors, while the 
‘‘negative’’ bars show how the electricity demand is supplied in each 
hour, for example, by the grid, PV generation, or battery discharge. 
Besides, the feed-in of PV to the grid is also represented by ‘‘negative’’ 
bars in pink color.

As shown, in a summer week, most of the household’s electricity 
demand can be satisfied by its PV-battery system, no matter if SEMS is 
adopted. However, when the battery operation can be optimized by an 
SEMS, its charging time will be postponed to around noon, as well as 
the domestic hot water tank. The PV surplus in the morning will be sold 
to the grid. The space cooling demand is also impacted by the building 
mass being used as storage. In a winter week, the PV generation is 
reduced. The household cannot sell PV surplus to the grid and the use of 
battery is also limited. The battery is only used when SEMS is adopted: 
the household can optimize by charging the space heating tank and the 
battery when the electricity price is lower, so we observe higher peaks 
around hours 25, 50, etc.

Finally, by varying the households’ behavior profiles and the com-
ponent assumptions, 640 heterogeneous households are constructed 
among which 320 of them are with PV installations. We assume that 
these households do not have SEMS installed by themselves but are 
members of an energy community. Their energy system operation is 
first calculated by the FLEX-Operation model with the simulation mode 
and then fed into the FLEX-Community model.

Fig.  11 shows the electricity balance of the community as a whole 
in summer and winter weeks. So, half of the households with installed 
PV, the community can be a net electricity producer in some hours 
while being a net consumer in the other hours in the summer. This 
means the aggregator can make a profit by shifting the surplus genera-
tion. Besides, under dynamic electricity price, the aggregator can store 
electricity when the price is lower and sell it when the price is higher. 
Finally, due to the heterogeneity within the community, the aggregator 
can also facilitate real-time P2P trading within the community. As a 
result, Fig.  12 shows the strategy optimized for the aggregator: P2P 
electricity trading amount and battery charge/discharge in each month 
of the year.

4. Discussions

By integrating three models into a consistent framework, FLEX 
provides the flexibility to analyze household energy consumption and 
impact of various technologies at different scales. In FLEX-Behavior, 
users can specify the composition of one household and analyze its 
appliance electricity and hot water demand, as well as the build-
ing occupancy. Assumptions of teleworking can be applied. By using 
FLEX-Operation, the counterfactual impact of different technology in-
stallations can be analyzed by comparing the results of different setups. 
Finally, by taking results from the first two models, FLEX-Community 
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Fig. 10. Electricity balance of HH3 in summer (top) and winter (bottom) weeks.

Fig. 11. Electricity balance of the energy community (50% PV adoption) in summer (left) and winter (right) weeks.

Fig. 12. P2P electricity trading amount and battery charge/discharge in the community.
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significantly improves the level of details in the modeling of energy 
communities. Users can construct an energy community from scratch, 
by defining the household composition and behavior of each commu-
nity member, as well as their adoptions of HP, PV, battery and EV in 
detail. However, despite its modeling flexibility, the FLEX suite also 
faces several limitations.

• First, the current version of FLEX-Behavior is based on data from 
the Germany time-use survey collected in 2012–2013, limiting 
its applicability to other countries. The households behavior and 
energy usage patterns could also have changed especially due 
to the impact of COVID-19 (e.g., teleworking). The model re-
quires updates when the micro-level data from the latest time-use 
survey become available. In addition, the profiles of electricity 
and hot water demand, as well as building occupancy, should 
be validated again with more detailed empirical data, preferably 
from the typical households categorized by socio-demographic 
properties. The seasonal variations in the behavior patterns of 
households (e.g., different routines in summer and winter) should 
also be included. Finally, the modeling of appliances use can be 
improved, with trigger probabilities estimated from micro-level 
data and more detailed usage behavior (e.g., minimum off time) 
considered.

• Second, FLEX-Behavior only models the profiles of appliance 
electricity demand, hot water demand, and building occupancy. 
These may be inconsistent with the driving profiles used in FLEX-
Operation. We acknowledge the approach in Ref. [7], where 
the authors generate all four profiles together. Users may also 
link that model with FLEX-Operation if necessary. Besides, for 
households with multiple members sharing a single EV, the un-
certainty in EV driving behavior could be significant, which may 
reduce the impact of these inconsistencies. Moreover, in Ref. [35], 
we use driving profiles developed from MOP data, which has 
a longer observation period, offering better insights into daily 
driving patterns compared to MiD14 data used in Ref. [7].

• Third, FLEX-Operation focuses only on the operational costs of 
a household’s energy system. For users interested in determining 
the optimal size of PV systems or batteries, the model requires 
running simulations for various size combinations and then pro-
cessing the results manually. This involves adding the investment 
costs separately to compare the overall system economics. Inte-
grating size optimization for PV and battery into FLEX-Operation 
is on our research agenda for the next phase. Furthermore, the 
heat distribution system in FLEX-Operation can be improved to 
better represent the floor heating system, which can not only 
lower the supply temperature and increase the efficiency of heat 
pumps, but also increase the heat capacity of the building and 
impact the optimization result.

• Fourth, regarding the energy-political framework of energy com-
munities, FLEX-Community is designed from the perspective of 
an aggregator who optimizes its strategies for facilitating peer-to-
peer trading and operating batteries. Two parameters (𝜃𝑏𝑖𝑑 and 
𝜃𝑎𝑠𝑘) are used to represent the aggregator’s pricing strategy, which 
also decides the profit allocation between community members. 
However, this approach may not be applicable to energy com-
munities that operate without an aggregator. The model could be 
enhanced to include mechanisms for decentralized energy com-
munities. In addition, the energy-political framework of energy 
communities is an important and dynamic aspect, and the model 
could be enhanced to represent a broader range of regulatory 
scenarios and community structures.
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Overall, compared with existing studies, the main strength of FLEX 
is its ability to bridge the gap between detailed household-level be-
havior and energy system modeling and community-scale optimization 
through its integrated, cascading framework. In particular, it offers a 
complementary approach to resolve the traditional trade-off between 
computational tractability and household-level accuracy in the mod-
eling of aggregator-operated energy communities. On the other hand, 
the primary limitations of FLEX also lie in its detailed modeling of 
household behavior and technology systems, which demands high-
quality micro-level data for estimation and validation. In addition, 
an important extension for FLEX as well as the broader field is to 
investigate the system-level dynamics, specifically the interface be-
tween energy communities and power system operations. Critical areas 
for investigation include the optimization of value streams through 
participation in ancillary services markets and demand response pro-
grams. Moreover, the evolving regulatory framework governing energy 
communities – encompassing aggregator roles, profit allocation mecha-
nisms, and market participation rules – constitutes a crucial domain for 
further investigation, particularly given the dynamic nature of energy 
policy landscapes.

5. Conclusions

Technological advances and changing behaviors are fundamentally 
reshaping household energy consumption patterns, necessitating so-
phisticated models to quantify their impacts and inform effective policy 
making. This paper presents FLEX, an integrated open-source Python 
framework for modeling household behavior, energy system operation, 
and community-level interactions. Through its three interconnected 
components – FLEX-Behavior, FLEX-Operation, and FLEX-Community – 
the framework enables comprehensive analysis from individual house-
hold consumption to community-scale dynamics. With comprehen-
sive validation and cases calculation, the framework’s capabilities are 
demonstrated. The strengths and limitations of the framework are also 
discussed.

Benefiting from its granular household-level modeling and inte-
grated framework, FLEX provides a robust analytical foundation for 
evaluating energy policies and regulatory frameworks. The framework 
has already demonstrated its versatility across multiple applications: as-
sessing smart charging impacts on electric vehicle ownership costs [35], 
evaluating prosumaging effects on grid expansion costs in combination 
with a distribution grid planning model [38], and analyzing system-
level implications of smart energy management [17], variable elec-
tricity pricing [39], and decentralized heat pumps as flexibility op-
tions [40]. Looking forward, FLEX can further contribute to understand-
ing how energy communities interface with the broader power system, 
particularly regarding participation in ancillary services markets and 
demand response programs.

CRediT authorship contribution statement

Songmin Yu: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Software, Methodology, Investiga-
tion, Formal analysis, Data curation, Conceptualization. Philipp 
Mascherbauer: Writing – review & editing, Writing – original draft, 
Validation, Software, Methodology, Investigation, Formal analysis, 
Conceptualization. Thomas Haupt: Writing – review & editing, 
Software, Methodology. Kevan Skorna: Writing – review & editing, 
Methodology, Data curation. Hannah Rickmann: Writing – review 
& editing, Visualization, Software, Data curation. Maksymilian 
Kochanski: Visualization, Validation, Methodology, Data curation. 
Lukas Kranzl: Writing – review & editing, Supervision, Project 
administration, Funding acquisition, Conceptualization.

https://www.infas.de/studien/mobilitaet-in-deutschland-mid/


S. Yu et al. Energy 328 (2025) 136338 
Declaration of competing interest

The authors declare the following financial interests/personal 
relationships which may be considered as potential competing 
interests: Songmin Yu reports financial support was provided by 
European Commission. If there are other authors, they declare 
that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work 
reported in this paper.

Data availability

Data will be made available on request.

References

[1] Chen Shuo, Zhang Guomin, Xia Xiaobo, Chen Yixing, Setunge Sujeeva, 
Shi Long. The impacts of occupant behavior on building energy consumption: 
A review. Sustain Energy Technol Assess 2021;45:101212.

[2] Aigner Dennis J, Sorooshian Cynts, Kerwin Pamela. Conditional demand 
analysis for estimating residential end-use load profiles. Energy J 1984;5(3).

[3] Bartels Robert, Fiebig Denzil G, Garben Michael, Lumsdaine Robert. 
An end-use electricity load simulation model: Delmod. Util Policy 
1992;2(1):71–82.

[4] Widén Joakim, Wäckelgård Ewa. A high-resolution stochastic model 
of domestic activity patterns and electricity demand. Appl Energy 
2010;87(6):1880–92.

[5] Richardson Ian, Thomson Murray, Infield David, Clifford Conor. Domestic 
electricity use: A high-resolution energy demand model. Energy Build 
2010;42(10):1878–87.

[6] Fischer David, Härtl Andreas, Wille-Haussmann Bernhard. Model for electric 
load profiles with high time resolution for German households. Energy Build 
2015;92:170–9.

[7] Müller Mathias, Biedenbach Florian, Reinhard Janis. Development of an 
integrated simulation model for load and mobility profiles of private 
households. Energies 2020;13(15).

[8] Osman Mohamed, Ouf Mohamed. A comprehensive review of time use 
surveys in modelling occupant presence and behavior: Data, methods, and 
applications. Build Environ 2021;196:107785.

[9] Lombardi Francesco, Balderrama Sergio, Quoilin Sylvain, Colombo Emanuela. 
Generating high-resolution multi-energy load profiles for remote areas with 
an open-source stochastic model. Energy 2019;177:433–44.

[10] Sperber Evelyn, Frey Ulrich, Bertsch Valentin. Reduced-order models for 
assessing demand response with heat pumps – insights from the German 
energy system. Energy Build 2020;223:110144.

[11] Bruno Roberto, Pizzuti Gianluca, Arcuri Natale. The prediction of thermal 
loads in building by means of the EN iso 13790 dynamic model: A 
comparison with TRNSYS. Energy Procedia 2016;101:192–9, ATI 2016 - 71st 
Conference of the Italian Thermal Machines Engineering Association.

[12] Michalak Piotr. The simple hourly method of EN ISO 13790 standard in 
matlab/simulink: A comparative study for the climatic conditions of Poland. 
Energy 2014;75:568–78.

[13] Kandler Christian. Modellierung von zeitnutzungs-, mobilitäts- und energiepro-
filen zur bestimmung der potentiale von energiemanagementsystemen in 
haushalten (Ph.D. thesis), Technische Universität München; 2017, p. 251.

[14] Klingler Anna-Lena. The effect of electric vehicles and heat pumps on the 
market potential of PV + battery systems. Energy 2018;161:1064–73.

[15] Kippelt Stefan. Dezentrale Flexibilitätsoptionen und ihr Beitrag zum Ausgleich 
der fluktuierenden Stromerzeugung Erneuerbarer Energien (Ph.D. thesis), 
Technischen Universität Dortmund; 2018.

[16] Haupt Thomas. Prosuming, demand response and technological flexibility: An 
integrated optimization model for households’ energy consumption behavior 
[Master thesis], Hochschule Ulm.; 2021.

[17] Mascherbauer Philipp, Kranzl Lukas, Yu Songmin, Haupt Thomas. Investi-
gating the impact of smart energy management system on the residential 
electricity consumption in Austria. Energy 2022;249:123665.
13 
[18] Sridhar Araavind, Thakur Jagruti, Baskar Ashish Guhan. A data-driven 
approach with dynamic load control for efficient demand-side management in 
residential household across multiple devices. Energy Rep 2024;11:5963–77.

[19] Dóci Gabriella, Vasileiadou Eleftheria, Petersen Arthur C. Exploring 
the transition potential of renewable energy communities. Futures 
2015;66:85–95.

[20] Ali Mubbashir, Alahäivälä Antti, Malik Farhan, Humayun Muhammad, 
Safdarian Amir, Lehtonen Matti. A market-oriented hierarchical framework for 
residential demand response. Int J Electr Power Energy Syst 2015;69:257–63.

[21] Kerscher Selina, Arboleya Pablo. The key role of aggregators in the energy 
transition under the latest European regulatory framework. Int J Electr Power 
Energy Syst 2022;134:107361.

[22] Okur Özge, Heijnen Petra, Lukszo Zofia. Aggregator’s business models in 
residential and service sectors: A review of operational and financial aspects. 
Renew Sustain Energy Rev 2021;139:110702.

[23] Belmar Francisco, Baptista Patrícia, Neves Diana. Modelling renewable energy 
communities: assessing the impact of different configurations, technologies 
and types of participants. Energy Sustain Soc 2023;13(1):18.

[24] Okur Özge, Voulis Nina, Heijnen Petra, Lukszo Zofia. Aggregator-mediated 
demand response: Minimizing imbalances caused by uncertainty of solar 
generation. Appl Energy 2019;247:426–37.

[25] Zhou Yuekuan, Lund Peter D. Peer-to-peer energy sharing and trad-
ing of renewable energy in smart communities – trading pricing 
models, decision-making and agent-based collaboration. Renew Energy 
2023;207:177–93.

[26] Kyriakopoulos Grigorios L. Energy communities overview: managerial poli-
cies, economic aspects, technologies, and models. J Risk Financ Manag 
2022;15(11):521.

[27] Schlemminger Marlon, Ohrdes Tobias, Schneider Elisabeth, Knoop Michael. 
Dataset on electrical single-family house and heat pump load profiles in 
Germany. Sci Data 2022;9(1):56.

[28] Destatis. Umweltökonomische Gesamtrechnungen - Private Haushalte 
und Umwelt. 2022, https://www.destatis.de/DE/Themen/Gesellschaft-
Umwelt/Umwelt/UGR/private-haushalte/Publikationen/Downloads/haushalte-
umwelt-pdf-5851319.html. [Accessed on 1 December 2023].

[29] Cirrincione Laura, Marvuglia Antonino, Peri Giorgia, Rizzo Gianfranco, 
Scaccianoce Gianluca. The European standards for energy efficiency in 
buildings: An analysis of the evolution with reference to a case study. In: 
74th ATI national congress: energy conversion: research, innovation and 
development for industry and territories, vol. 2191, Erode, India; 2019, 
020049.

[30] Michalak Piotr. The simple hourly method of EN ISO 13790 standard in 
Matlab/Simulink: A comparative study for the climatic conditions of Poland. 
Energy 2014;75:568–78.

[31] Wärmepumpen von Bosch.
[32] Ochsner wärmepumpen. 2021.
[33] Viessmann vitocal A series.
[34] Daikin altherma technical data sheet.
[35] Gnann Till, Yu Songmin, Stute Judith, Kühnbach Matthias. The value of 

smart charging at home and its impact on EV market shares–A German case 
study. Appl Energy 2025;380:124997.

[36] Park Seho, Ahn Changsun. Model predictive control with stochastically 
approximated cost-to-go for battery cooling system of electric vehicles. IEEE 
Trans Veh Technol 2021;70(5):4312–23.

[37] Abdufattokhov Shokhjakon, Zanon Mario, Bemporad Alberto. Learning convex 
terminal costs for complexity reduction in MPC. In: 2021 60th IEEE 
conference on decision and control. CDC, 2021, p. 2163–8.

[38] Mascherbauer Philipp, Martínez Miguel, Mateo Carlos, Yu Songmin, 
Kranzl Lukas. Analyzing the impact of heating electrification and 
prosumaging on the future distribution grid costs. Appl Energy 
2025;387:125563.

[39] Mascherbauer Philipp, Schöniger Franziska, Kranzl Lukas, Yu Songmin. Impact 
of variable electricity price on heat pump operated buildings. Open Res Eur 
2022;2(135).

[40] Schöniger Franziska, Mascherbauer Philipp, Resch Gustav, Kranzl Lukas, 
Haas Reinhard. The potential of decentral heat pumps as flexibility option 
for decarbonised energy systems. Energy Effic 2024;17(4):26.

http://refhub.elsevier.com/S0360-5442(25)01980-2/sb1
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb1
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb1
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb1
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb1
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb2
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb2
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb2
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb3
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb3
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb3
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb3
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb3
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb4
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb4
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb4
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb4
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb4
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb5
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb5
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb5
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb5
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb5
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb6
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb6
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb6
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb6
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb6
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb7
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb7
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb7
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb7
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb7
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb8
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb8
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb8
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb8
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb8
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb9
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb9
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb9
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb9
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb9
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb10
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb10
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb10
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb10
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb10
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb11
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb11
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb11
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb11
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb11
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb11
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb11
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb12
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb12
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb12
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb12
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb12
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb13
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb13
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb13
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb13
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb13
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb14
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb14
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb14
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb15
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb15
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb15
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb15
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb15
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb16
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb16
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb16
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb16
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb16
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb17
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb17
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb17
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb17
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb17
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb18
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb18
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb18
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb18
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb18
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb19
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb19
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb19
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb19
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb19
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb20
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb20
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb20
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb20
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb20
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb21
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb21
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb21
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb21
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb21
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb22
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb22
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb22
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb22
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb22
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb23
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb23
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb23
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb23
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb23
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb24
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb24
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb24
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb24
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb24
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb25
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb25
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb25
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb25
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb25
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb25
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb25
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb26
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb26
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb26
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb26
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb26
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb27
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb27
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb27
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb27
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb27
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Publikationen/Downloads/haushalte-umwelt-pdf-5851319.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Publikationen/Downloads/haushalte-umwelt-pdf-5851319.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Publikationen/Downloads/haushalte-umwelt-pdf-5851319.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Publikationen/Downloads/haushalte-umwelt-pdf-5851319.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Publikationen/Downloads/haushalte-umwelt-pdf-5851319.html
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb29
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb29
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb29
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb29
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb29
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb29
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb29
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb29
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb29
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb29
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb29
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb30
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb30
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb30
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb30
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb30
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb32
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb35
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb35
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb35
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb35
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb35
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb36
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb36
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb36
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb36
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb36
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb37
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb37
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb37
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb37
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb37
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb38
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb38
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb38
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb38
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb38
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb38
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb38
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb39
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb39
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb39
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb39
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb39
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb40
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb40
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb40
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb40
http://refhub.elsevier.com/S0360-5442(25)01980-2/sb40

	Modeling households' behavior, energy system operation, and interaction in the energy community
	Introduction
	Model
	FLEX-Behavior
	FLEX-Operation
	Heating and Cooling Demand Modeling
	Heating and Cooling System Modeling
	PV and Battery Modeling
	Vehicle Modeling
	Running Modes

	FLEX-Community

	Results
	Discussions
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


